从单视图重建3D形状是一个长期的研究问题。在本文中,我们展示了深度隐式地面网络,其可以通过预测底层符号距离场来从2D图像产生高质量的细节的3D网格。除了利用全局图像特征之外,禁止2D图像上的每个3D点的投影位置,并从图像特征映射中提取本地特征。结合全球和局部特征显着提高了符合距离场预测的准确性,特别是对于富含细节的区域。据我们所知,伪装是一种不断捕获从单视图图像中存在于3D形状中存在的孔和薄结构等细节的方法。 Disn在从合成和真实图像重建的各种形状类别上实现最先进的单视性重建性能。代码可在https://github.com/xharlie/disn提供补充可以在https://xharlie.github.io/images/neUrips_2019_Supp.pdf中找到补充
translated by 谷歌翻译
最近的工作取得了令人印象深刻的进展,从单眼颜色图像中联合重建手和操纵物体。现有的方法着重于两个替代表示,以参数网格或签名的距离字段(SDF)。一方面,参数模型可以以有限的形状变形和网格分辨率的成本从先验知识中受益。因此,网格模型可能无法精确地重建细节,例如手和物体的接触表面。另一方面,基于SDF的方法可以代表任意细节,但缺乏明确的先验。在这项工作中,我们旨在使用参数表示提供的PRIOR来改善SDF模型。特别是,我们提出了一个联合学习框架,该框架可以解散姿势和形状。我们从参数模型中获取手和对象摆姿势,并使用它们在3D空间中对齐SDF。我们表明,这种对齐的SDF可以更好地专注于重建形状细节,并提高手和物体的重建精度。我们评估了我们的方法,并在挑战性的OBMAN和DEXYCB基准方面证明了对最新技术的显着改善。
translated by 谷歌翻译
基于单个草图图像重建3D形状是由于稀疏,不规则的草图和常规,密集的3D形状之间的较大域间隙而具有挑战性的。现有的作品尝试采用从草图提取的全局功能来直接预测3D坐标,但通常会遭受失去对输入草图不忠心的细节。通过分析3D到2D投影过程,我们注意到表征2D点云分布的密度图(即,投影平面每个位置的点的概率)可以用作代理,以促进该代理重建过程。为此,我们首先通过图像翻译网络将草图翻译成一个更有信息的2D表示,可用于生成密度映射。接下来,通过两个阶段的概率采样过程重建一个3D点云:首先通过对密度映射进行采样,首先恢复2D点(即X和Y坐标);然后通过在每个2D点确定的射线处采样深度值来预测深度​​(即Z坐标)。进行了广泛的实验,定量和定性结果都表明,我们提出的方法显着优于其他基线方法。
translated by 谷歌翻译
在视觉计算中,3D几何形状以许多不同的形式表示,包括网格,点云,体素电网,水平集和深度图像。每个表示都适用于不同的任务,从而使一个表示形式转换为另一个表示(前向地图)是一个重要且常见的问题。我们提出了全向距离字段(ODF),这是一种新的3D形状表示形式,该表示通过将深度从任何观看方向从任何3D位置存储到对象的表面来编码几何形状。由于射线是ODF的基本单元,因此可以轻松地从通用的3D表示和点云等常见的3D表示。与限制代表封闭表面的水平集方法不同,ODF是未签名的,因此可以对开放表面进行建模(例如服装)。我们证明,尽管在遮挡边界处存在固有的不连续性,但可以通过神经网络(Neururodf)有效地学习ODF。我们还引入了有效的前向映射算法,以转换odf to&从常见的3D表示。具体而言,我们引入了一种有效的跳跃立方体算法,用于从ODF生成网格。实验表明,神经模型可以通过过度拟合单个对象学会学会捕获高质量的形状,并学会概括对共同的形状类别。
translated by 谷歌翻译
我们介绍DMTET,深度3D条件生成模型,可以使用诸如粗体素的简单用户指南来合成高分辨率3D形状。它通过利用新型混合3D表示来结婚隐式和显式3D表示的优点。与当前隐含的方法相比,培训涉及符号距离值,DMTET直接针对重建的表面进行了优化,这使我们能够用更少的伪像来合成更精细的几何细节。与直接生成诸如网格之类的显式表示的深度3D生成模型不同,我们的模型可以合成具有任意拓扑的形状。 DMTET的核心包括可变形的四面体网格,其编码离散的符号距离函数和可分行的行进Tetrahedra层,其将隐式符号距离表示转换为显式谱图表示。这种组合允许使用在表面网格上明确定义的重建和对抗性损耗来联合优化表面几何形状和拓扑以及生成细分层次结构。我们的方法显着优于来自粗体素输入的条件形状合成的现有工作,培训在复杂的3D动物形状的数据集上。项目页面:https://nv-tlabs.github.io/dmtet/
translated by 谷歌翻译
我们的方法从单个RGB-D观察中研究了以对象为中心的3D理解的复杂任务。由于这是一个不适的问题,因此现有的方法在3D形状和6D姿势和尺寸估计中都遭受了遮挡的复杂多对象方案的尺寸估计。我们提出了Shapo,这是一种联合多对象检测的方法,3D纹理重建,6D对象姿势和尺寸估计。 Shapo的关键是一条单杆管道,可回归形状,外观和构成潜在的代码以及每个对象实例的口罩,然后以稀疏到密集的方式进一步完善。首先学到了一种新颖的剖面形状和前景数据库,以将对象嵌入各自的形状和外观空间中。我们还提出了一个基于OCTREE的新颖的可区分优化步骤,使我们能够以分析的方式进一步改善对象形状,姿势和外观。我们新颖的联合隐式纹理对象表示使我们能够准确地识别和重建新颖的看不见的对象,而无需访问其3D网格。通过广泛的实验,我们表明我们的方法在模拟的室内场景上进行了训练,可以准确地回归现实世界中新颖物体的形状,外观和姿势,并以最小的微调。我们的方法显着超过了NOCS数据集上的所有基准,对于6D姿势估计,MAP的绝对改进为8%。项目页面:https://zubair-irshad.github.io/projects/shapo.html
translated by 谷歌翻译
我们引入了一个新的隐式形状表示,称为基于射线的隐式函数(PRIF)。与基于处理空间位置的签名距离函数(SDF)的大多数现有方法相反,我们的表示形式在定向射线上运行。具体而言,PRIF的配制是直接产生给定输入射线的表面命中点,而无需昂贵的球体跟踪操作,因此可以有效地提取形状提取和可区分的渲染。我们证明,经过编码PRIF的神经网络在各种任务中取得了成功,包括单个形状表示,类别形状的生成,从稀疏或嘈杂的观察到形状完成,相机姿势估计的逆渲染以及带有颜色的神经渲染。
translated by 谷歌翻译
We propose a differentiable sphere tracing algorithm to bridge the gap between inverse graphics methods and the recently proposed deep learning based implicit signed distance function. Due to the nature of the implicit function, the rendering process requires tremendous function queries, which is particularly problematic when the function is represented as a neural network. We optimize both the forward and backward passes of our rendering layer to make it run efficiently with affordable memory consumption on a commodity graphics card. Our rendering method is fully differentiable such that losses can be directly computed on the rendered 2D observations, and the gradients can be propagated backwards to optimize the 3D geometry. We show that our rendering method can effectively reconstruct accurate 3D shapes from various inputs, such as sparse depth and multi-view images, through inverse optimization. With the geometry based reasoning, our 3D shape prediction methods show excellent generalization capability and robustness against various noises. * Work done while Shaohui Liu was an academic guest at ETH Zurich.
translated by 谷歌翻译
Computer graphics, 3D computer vision and robotics communities have produced multiple approaches to represent and generate 3D shapes, as well as a vast number of use cases. However, single-view reconstruction remains a challenging topic that can unlock various interesting use cases such as interactive design. In this work, we propose a novel framework that leverages the intermediate latent spaces of Vision Transformer (ViT) and a joint image-text representational model, CLIP, for fast and efficient Single View Reconstruction (SVR). More specifically, we propose a novel mapping network architecture that learns a mapping between deep features extracted from ViT and CLIP, and the latent space of a base 3D generative model. Unlike previous work, our method enables view-agnostic reconstruction of 3D shapes, even in the presence of large occlusions. We use the ShapeNetV2 dataset and perform extensive experiments with comparisons to SOTA methods to demonstrate our method's effectiveness.
translated by 谷歌翻译
Figure 1: DeepSDF represents signed distance functions (SDFs) of shapes via latent code-conditioned feed-forward decoder networks. Above images are raycast renderings of DeepSDF interpolating between two shapes in the learned shape latent space. Best viewed digitally.
translated by 谷歌翻译
我们引入了统一的单一和多视图神经隐式3D重建框架VPFusion。 VPFusion使用-3D功能卷获得高质量的重建,以捕获3D结构感知的上下文和像素对齐的图像特征,以捕获精细的本地细节。现有方法使用RNN,功能池或注意力在每个视图中独立计算以进行多视图融合。 RNN遭受长期记忆丧失和置换差异的困扰,而特征池或独立计算的注意力会导致每种视图中的表示形式在最后的合并步骤之前都不知道其他视图。相比之下,我们通过建立基于变压器的成对视图关联来显示改进的多视图融合。特别是,我们提出了一种新颖的交错3D推理和成对视图的关联结构,以跨不同视图的特征体积融合。使用此结构感知和多视图感知功能量,与现有方法相比,我们显示出改进的3D重建性能。 VPFusion还通过合并与像素一致的本地图像功能来进一步提高重建质量,以捕获细节。我们验证了VPFusion在Shapenet和ModelNet数据集上的有效性,在该数据集中,我们在该数据集中胜过或执行最先进的单个和多视图3D形状重建方法。
translated by 谷歌翻译
We advocate the use of implicit fields for learning generative models of shapes and introduce an implicit field decoder, called IM-NET, for shape generation, aimed at improving the visual quality of the generated shapes. An implicit field assigns a value to each point in 3D space, so that a shape can be extracted as an iso-surface. IM-NET is trained to perform this assignment by means of a binary classifier. Specifically, it takes a point coordinate, along with a feature vector encoding a shape, and outputs a value which indicates whether the point is outside the shape or not. By replacing conventional decoders by our implicit decoder for representation learning (via IM-AE) and shape generation (via IM-GAN), we demonstrate superior results for tasks such as generative shape modeling, interpolation, and single-view 3D reconstruction, particularly in terms of visual quality. Code and supplementary material are available at https://github.com/czq142857/implicit-decoder.
translated by 谷歌翻译
场景完成是从场景的部分扫描中完成缺失几何形状的任务。大多数以前的方法使用3D网格上的截断签名距离函数(T-SDF)计算出隐式表示,作为神经网络的输入。截断限制,但不会删除由非关闭表面符号引入的模棱两可的案例。作为替代方案,我们提出了一个未签名的距离函数(UDF),称为未签名的加权欧几里得距离(UWED)作为场景完成神经网络的输入表示。 UWED作为几何表示是简单而有效的,并且可以在任何点云上计算,而与通常的签名距离函数(SDF)相比,UWED不需要正常的计算。为了获得明确的几何形状,我们提出了一种从常规网格上离散的UDF值提取点云的方法。我们比较了从RGB-D和LIDAR传感器收集的室内和室外点云上的场景完成任务的不同SDF和UDFS,并使用建议的UWED功能显示了改进的完成。
translated by 谷歌翻译
我们提出了一个新的框架,以重建整体3D室内场景,包括单视图像的房间背景和室内对象。由于室内场景的严重阻塞,现有方法只能产生具有有限几何质量的室内物体的3D形状。为了解决这个问题,我们提出了一个与实例一致的隐式函数(InstPifu),以进行详细的对象重建。与实例对齐的注意模块结合使用,我们的方法有权将混合的局部特征与遮挡实例相结合。此外,与以前的方法不同,该方法仅代表房间背景为3D边界框,深度图或一组平面,我们通过隐式表示恢复了背景的精细几何形状。在E SUN RGB-D,PIX3D,3D-FUTURE和3D-FRONT数据集上进行的广泛实验表明,我们的方法在背景和前景对象重建中均优于现有方法。我们的代码和模型将公开可用。
translated by 谷歌翻译
精确地重建由单个图像的各种姿势和服装引起的精确复杂的人类几何形状非常具有挑战性。最近,基于像素对齐的隐式函数(PIFU)的作品已迈出了一步,并在基于图像的3D人数数字化上实现了最先进的保真度。但是,PIFU的培训在很大程度上取决于昂贵且有限的3D地面真相数据(即合成数据),从而阻碍了其对更多样化的现实世界图像的概括。在这项工作中,我们提出了一个名为selfpifu的端到端自我监督的网络,以利用丰富和多样化的野外图像,在对无约束的内部图像进行测试时,在很大程度上改善了重建。 SelfPifu的核心是深度引导的体积/表面感知的签名距离领域(SDF)学习,它可以自欺欺人地学习PIFU,而无需访问GT网格。整个框架由普通估计器,深度估计器和基于SDF的PIFU组成,并在训练过程中更好地利用了额外的深度GT。广泛的实验证明了我们自我监督框架的有效性以及使用深度作为输入的优越性。在合成数据上,与PIFUHD相比,我们的交叉点(IOU)达到93.5%,高18%。对于野外图像,我们对重建结果进行用户研究,与其他最先进的方法相比,我们的结果的选择率超过68%。
translated by 谷歌翻译
从杂乱场景跟踪和重建3D对象是计算机视觉,机器人和自主驾驶系统的关键组件。虽然最近隐含功能的进展(例如,Deepsdf)已经显示出令人鼓舞的高质量3D形状重建结果,但仍然非常具有挑战性,以概括为杂乱和部分可观察的LIDAR数据。在本文中,我们建议利用视频数据的连续性。我们介绍了一种新颖和统一的框架,它利用DeepsDF模型来同时跟踪和重建野外的3D对象。我们在线调整视频中的DeepsDF模型,迭代改善形状重建,同时在返回改进跟踪时,反之亦然。我们试验Waymo和Kitti数据集,并对跟踪和形状重建的最先进方法显着改进。
translated by 谷歌翻译
从单个2D图像推断3D位置和多个对象的形状是计算机视觉的长期目标。大多数现有的作品都预测这些3D属性之一或专注于解决单个对象。一个基本挑战在于如何学习适合3D检测和重建的图像的有效表示。在这项工作中,我们建议从输入图像中学习3D体素特征的常规网格,其通过3D特征升降操作员与3D场景空间对齐。基于3D体素特征,我们的新型中心-3D检测头在3D空间中配制了3D检测作为关键点检测。此外,我们设计了一种高效的粗致细重建模块,包括粗级体轴和新的本地PCA-SDF形状表示,其能够精细的细节重建和比现有方法更快地推理的阶数。通过3D检测和重建的互补监督,可以使3D体素特征成为几何和上下文保留,从而通过单个对象中的3D检测和重建来证明我们的方法的有效性和多个对象场景。
translated by 谷歌翻译
您将如何通过一些错过来修复物理物体?您可能会想象它的原始形状从先前捕获的图像中,首先恢复其整体(全局)但粗大的形状,然后完善其本地细节。我们有动力模仿物理维修程序以解决点云完成。为此,我们提出了一个跨模式的形状转移双转化网络(称为CSDN),这是一种带有全循环参与图像的粗到精细范式,以完成优质的点云完成。 CSDN主要由“ Shape Fusion”和“ Dual-Refinect”模块组成,以应对跨模式挑战。第一个模块将固有的形状特性从单个图像传输,以指导点云缺失区域的几何形状生成,在其中,我们建议iPadain嵌入图像的全局特征和部分点云的完成。第二个模块通过调整生成点的位置来完善粗糙输出,其中本地改进单元通过图卷积利用了小说和输入点之间的几何关系,而全局约束单元则利用输入图像来微调生成的偏移。与大多数现有方法不同,CSDN不仅探讨了图像中的互补信息,而且还可以在整个粗到精细的完成过程中有效利用跨模式数据。实验结果表明,CSDN对十个跨模式基准的竞争对手表现出色。
translated by 谷歌翻译