从单个2D图像推断3D位置和多个对象的形状是计算机视觉的长期目标。大多数现有的作品都预测这些3D属性之一或专注于解决单个对象。一个基本挑战在于如何学习适合3D检测和重建的图像的有效表示。在这项工作中,我们建议从输入图像中学习3D体素特征的常规网格,其通过3D特征升降操作员与3D场景空间对齐。基于3D体素特征,我们的新型中心-3D检测头在3D空间中配制了3D检测作为关键点检测。此外,我们设计了一种高效的粗致细重建模块,包括粗级体轴和新的本地PCA-SDF形状表示,其能够精细的细节重建和比现有方法更快地推理的阶数。通过3D检测和重建的互补监督,可以使3D体素特征成为几何和上下文保留,从而通过单个对象中的3D检测和重建来证明我们的方法的有效性和多个对象场景。
translated by 谷歌翻译
我们的方法从单个RGB-D观察中研究了以对象为中心的3D理解的复杂任务。由于这是一个不适的问题,因此现有的方法在3D形状和6D姿势和尺寸估计中都遭受了遮挡的复杂多对象方案的尺寸估计。我们提出了Shapo,这是一种联合多对象检测的方法,3D纹理重建,6D对象姿势和尺寸估计。 Shapo的关键是一条单杆管道,可回归形状,外观和构成潜在的代码以及每个对象实例的口罩,然后以稀疏到密集的方式进一步完善。首先学到了一种新颖的剖面形状和前景数据库,以将对象嵌入各自的形状和外观空间中。我们还提出了一个基于OCTREE的新颖的可区分优化步骤,使我们能够以分析的方式进一步改善对象形状,姿势和外观。我们新颖的联合隐式纹理对象表示使我们能够准确地识别和重建新颖的看不见的对象,而无需访问其3D网格。通过广泛的实验,我们表明我们的方法在模拟的室内场景上进行了训练,可以准确地回归现实世界中新颖物体的形状,外观和姿势,并以最小的微调。我们的方法显着超过了NOCS数据集上的所有基准,对于6D姿势估计,MAP的绝对改进为8%。项目页面:https://zubair-irshad.github.io/projects/shapo.html
translated by 谷歌翻译
我们引入了统一的单一和多视图神经隐式3D重建框架VPFusion。 VPFusion使用-3D功能卷获得高质量的重建,以捕获3D结构感知的上下文和像素对齐的图像特征,以捕获精细的本地细节。现有方法使用RNN,功能池或注意力在每个视图中独立计算以进行多视图融合。 RNN遭受长期记忆丧失和置换差异的困扰,而特征池或独立计算的注意力会导致每种视图中的表示形式在最后的合并步骤之前都不知道其他视图。相比之下,我们通过建立基于变压器的成对视图关联来显示改进的多视图融合。特别是,我们提出了一种新颖的交错3D推理和成对视图的关联结构,以跨不同视图的特征体积融合。使用此结构感知和多视图感知功能量,与现有方法相比,我们显示出改进的3D重建性能。 VPFusion还通过合并与像素一致的本地图像功能来进一步提高重建质量,以捕获细节。我们验证了VPFusion在Shapenet和ModelNet数据集上的有效性,在该数据集中,我们在该数据集中胜过或执行最先进的单个和多视图3D形状重建方法。
translated by 谷歌翻译
我们在野外的一对立体声RGB图像上介绍了基于类别级3D对象检测和隐式形状估计的基于学习的框架。传统的立体声3D对象检测方法仅使用3D边界框来描述检测到的对象,无法推断出完全的表面几何形状,这使得创造难以创造逼真的户外沉浸体验。相比之下,我们提出了一种新的模型S-3D-RCNN,可以执行精确的本地化,并为检测到的对象提供完整和分辨不可行的形状描述。我们首先使用全局本地框架从形状重建估计对象坐标系估计。然后,我们提出了一种新的实例级网络,通过从立体声区域的基于点的表示来解决未经遵守的表面幻觉问题,并且Infers具有预测的完整表面几何形状的隐式形状码。广泛的实验使用Kitti基准测试的现有和新指标验证我们的方法的卓越性能。此HTTPS URL可提供代码和预先接受的型号。
translated by 谷歌翻译
从单视图重建3D形状是一个长期的研究问题。在本文中,我们展示了深度隐式地面网络,其可以通过预测底层符号距离场来从2D图像产生高质量的细节的3D网格。除了利用全局图像特征之外,禁止2D图像上的每个3D点的投影位置,并从图像特征映射中提取本地特征。结合全球和局部特征显着提高了符合距离场预测的准确性,特别是对于富含细节的区域。据我们所知,伪装是一种不断捕获从单视图图像中存在于3D形状中存在的孔和薄结构等细节的方法。 Disn在从合成和真实图像重建的各种形状类别上实现最先进的单视性重建性能。代码可在https://github.com/xharlie/disn提供补充可以在https://xharlie.github.io/images/neUrips_2019_Supp.pdf中找到补充
translated by 谷歌翻译
我们提出了一个新的框架,以重建整体3D室内场景,包括单视图像的房间背景和室内对象。由于室内场景的严重阻塞,现有方法只能产生具有有限几何质量的室内物体的3D形状。为了解决这个问题,我们提出了一个与实例一致的隐式函数(InstPifu),以进行详细的对象重建。与实例对齐的注意模块结合使用,我们的方法有权将混合的局部特征与遮挡实例相结合。此外,与以前的方法不同,该方法仅代表房间背景为3D边界框,深度图或一组平面,我们通过隐式表示恢复了背景的精细几何形状。在E SUN RGB-D,PIX3D,3D-FUTURE和3D-FRONT数据集上进行的广泛实验表明,我们的方法在背景和前景对象重建中均优于现有方法。我们的代码和模型将公开可用。
translated by 谷歌翻译
Recently, implicit neural representations have gained popularity for learning-based 3D reconstruction. While demonstrating promising results, most implicit approaches are limited to comparably simple geometry of single objects and do not scale to more complicated or large-scale scenes. The key limiting factor of implicit methods is their simple fullyconnected network architecture which does not allow for integrating local information in the observations or incorporating inductive biases such as translational equivariance. In this paper, we propose Convolutional Occupancy Networks, a more flexible implicit representation for detailed reconstruction of objects and 3D scenes. By combining convolutional encoders with implicit occupancy decoders, our model incorporates inductive biases, enabling structured reasoning in 3D space. We investigate the effectiveness of the proposed representation by reconstructing complex geometry from noisy point clouds and low-resolution voxel representations. We empirically find that our method enables the fine-grained implicit 3D reconstruction of single objects, scales to large indoor scenes, and generalizes well from synthetic to real data.
translated by 谷歌翻译
我们介绍了Sparseneus,这是一种基于神经渲染的新方法,用于从多视图图像中进行表面重建的任务。当仅提供稀疏图像作为输入时,此任务变得更加困难,这种情况通常会产生不完整或失真的结果。此外,他们无法概括看不见的新场景会阻碍他们在实践中的应用。相反,Sparseneus可以概括为新场景,并与稀疏的图像(仅2或3)良好合作。 Sparseneus采用签名的距离函数(SDF)作为表面表示,并通过引入代码编码通用表面预测的几何形状来从图像特征中学习可概括的先验。此外,引入了几种策略,以有效利用稀疏视图来进行高质量重建,包括1)多层几何推理框架以粗略的方式恢复表面; 2)多尺度的颜色混合方案,以实现更可靠的颜色预测; 3)一种一致性意识的微调方案,以控制由遮挡和噪声引起的不一致区域。广泛的实验表明,我们的方法不仅胜过最先进的方法,而且表现出良好的效率,可推广性和灵活性。
translated by 谷歌翻译
Training parts from ShapeNet. (b) t-SNE plot of part embeddings. (c) Reconstructing entire scenes with Local Implicit Grids Figure 1:We learn an embedding of parts from objects in ShapeNet [3] using a part autoencoder with an implicit decoder. We show that this representation of parts is generalizable across object categories, and easily scalable to large scenes. By localizing implicit functions in a grid, we are able to reconstruct entire scenes from points via optimization of the latent grid.
translated by 谷歌翻译
深度学习识别的进步导致使用2D图像准确的对象检测。然而,这些2D感知方法对于完整的3D世界信息不足。同时,高级3D形状估计接近形状本身的焦点,而不考虑公制量表。这些方法无法确定对象的准确位置和方向。为了解决这个问题,我们提出了一个框架,该框架共同估计了从单个RGB图像的度量标度形状和姿势。我们的框架有两个分支:公制刻度对象形状分支(MSO)和归一化对象坐标空间分支(NOC)。 MSOS分支估计在相机坐标中观察到的度量标准形状。 NOCS分支预测归一化对象坐标空间(NOCS)映射,并从预测的度量刻度网格与渲染的深度图执行相似性转换,以获得6D姿势和大小。此外,我们介绍了归一化对象中心估计(NOCE),以估计从相机到物体中心的几何对齐距离。我们在合成和实际数据集中验证了我们的方法,以评估类别级对象姿势和形状。
translated by 谷歌翻译
由于真实的3D注释的类别数据的不可用,在合成数据集中,传统的学习3D对象类别的方法主要受到培训和评估。我们的主要目标是通过在与现有的合成对应物类似的幅度下收集现实世界数据来促进该领域的进步。因此,这项工作的主要贡献是一个大型数据集,称为3D中的常见对象,具有使用相机姿势和地面真相3D点云注释的对象类别的真实多视图图像。 DataSet总共包含从50 MS-Coco类别的近19,000个视频中捕获对象的150万帧,因此,在类别和对象的数量方面,它比替代更大。我们利用这款新数据集进行了几个新型综合和以类别为中心的3D重建方法的第一个大规模“野外”评估。最后,我们贡献了一种新型的神经渲染方法,它利用强大的变压器来重建对象,给出少量的视图。 CO3D DataSet可在HTTPS://github.com/facebookResearch/co3d获取。
translated by 谷歌翻译
综合照片 - 现实图像和视频是计算机图形的核心,并且是几十年的研究焦点。传统上,使用渲染算法(如光栅化或射线跟踪)生成场景的合成图像,其将几何形状和材料属性的表示为输入。统称,这些输入定义了实际场景和呈现的内容,并且被称为场景表示(其中场景由一个或多个对象组成)。示例场景表示是具有附带纹理的三角形网格(例如,由艺术家创建),点云(例如,来自深度传感器),体积网格(例如,来自CT扫描)或隐式曲面函数(例如,截短的符号距离)字段)。使用可分辨率渲染损耗的观察结果的这种场景表示的重建被称为逆图形或反向渲染。神经渲染密切相关,并将思想与经典计算机图形和机器学习中的思想相结合,以创建用于合成来自真实观察图像的图像的算法。神经渲染是朝向合成照片现实图像和视频内容的目标的跨越。近年来,我们通过数百个出版物显示了这一领域的巨大进展,这些出版物显示了将被动组件注入渲染管道的不同方式。这种最先进的神经渲染进步的报告侧重于将经典渲染原则与学习的3D场景表示结合的方法,通常现在被称为神经场景表示。这些方法的一个关键优势在于它们是通过设计的3D-一致,使诸如新颖的视点合成捕获场景的应用。除了处理静态场景的方法外,我们还涵盖了用于建模非刚性变形对象的神经场景表示...
translated by 谷歌翻译
神经隐式表示在新的视图合成和来自多视图图像的高质量3D重建方面显示了其有效性。但是,大多数方法都集中在整体场景表示上,但忽略了其中的各个对象,从而限制了潜在的下游应用程序。为了学习对象组合表示形式,一些作品将2D语义图作为训练中的提示,以掌握对象之间的差异。但是他们忽略了对象几何和实例语义信息之间的牢固联系,这导致了单个实例的不准确建模。本文提出了一个新颖的框架ObjectsDF,以在3D重建和对象表示中构建具有高保真度的对象复合神经隐式表示。观察常规音量渲染管道的歧义,我们通过组合单个对象的签名距离函数(SDF)来对场景进行建模,以发挥明确的表面约束。区分不同实例的关键是重新审视单个对象的SDF和语义标签之间的牢固关联。特别是,我们将语义信息转换为对象SDF的函数,并为场景和对象开发统一而紧凑的表示形式。实验结果表明,ObjectSDF框架在表示整体对象组合场景和各个实例方面的优越性。可以在https://qianyiwu.github.io/objectsdf/上找到代码
translated by 谷歌翻译
我们为RGB视频提供了基于变压器的神经网络体系结构,用于多对象3D重建。它依赖于表示知识的两种替代方法:作为特征的全局3D网格和一系列特定的2D网格。我们通过专用双向注意机制在两者之间逐步交换信息。我们利用有关图像形成过程的知识,以显着稀疏注意力重量矩阵,从而使我们的体系结构在记忆和计算方面可行。我们在3D特征网格的顶部附上一个detr风格的头,以检测场景中的对象并预测其3D姿势和3D形状。与以前的方法相比,我们的体系结构是单阶段,端到端可训练,并且可以从整体上考虑来自多个视频帧的场景,而无需脆弱的跟踪步骤。我们在挑战性的SCAN2CAD数据集上评估了我们的方法,在该数据集中,我们的表现要优于RGB视频的3D对象姿势估算的最新最新方法; (2)将多视图立体声与RGB-D CAD对齐结合的强大替代方法。我们计划发布我们的源代码。
translated by 谷歌翻译
虚拟内容创建和互动在现代3D应用中起着重要作用,例如AR和VR。从真实场景中恢复详细的3D模型可以显着扩大其应用程序的范围,并在计算机视觉和计算机图形社区中进行了数十年的研究。我们提出了基于体素的隐式表面表示Vox-Surf。我们的Vox-Surf将空间分为有限的体素。每个体素将几何形状和外观信息存储在其角顶点。 Vox-Surf得益于从体素表示继承的稀疏性,几乎适用于任何情况,并且可以轻松地从多个视图图像中训练。我们利用渐进式训练程序逐渐提取重要体素,以进一步优化,以便仅保留有效的体素,从而大大减少了采样点的数量并增加了渲染速度。细素还可以视为碰撞检测的边界量。该实验表明,与其他方法相比,Vox-Surf表示可以学习精致的表面细节和准确的颜色,并以更少的记忆力和更快的渲染速度来学习。我们还表明,Vox-Surf在场景编辑和AR应用中可能更实用。
translated by 谷歌翻译
在视觉计算中,3D几何形状以许多不同的形式表示,包括网格,点云,体素电网,水平集和深度图像。每个表示都适用于不同的任务,从而使一个表示形式转换为另一个表示(前向地图)是一个重要且常见的问题。我们提出了全向距离字段(ODF),这是一种新的3D形状表示形式,该表示通过将深度从任何观看方向从任何3D位置存储到对象的表面来编码几何形状。由于射线是ODF的基本单元,因此可以轻松地从通用的3D表示和点云等常见的3D表示。与限制代表封闭表面的水平集方法不同,ODF是未签名的,因此可以对开放表面进行建模(例如服装)。我们证明,尽管在遮挡边界处存在固有的不连续性,但可以通过神经网络(Neururodf)有效地学习ODF。我们还引入了有效的前向映射算法,以转换odf to&从常见的3D表示。具体而言,我们引入了一种有效的跳跃立方体算法,用于从ODF生成网格。实验表明,神经模型可以通过过度拟合单个对象学会学会捕获高质量的形状,并学会概括对共同的形状类别。
translated by 谷歌翻译
机器学习的最近进步已经创造了利用一类基于坐标的神经网络来解决视觉计算问题的兴趣,该基于坐标的神经网络在空间和时间跨空间和时间的场景或对象的物理属性。我们称之为神经领域的这些方法已经看到在3D形状和图像的合成中成功应用,人体的动画,3D重建和姿势估计。然而,由于在短时间内的快速进展,许多论文存在,但尚未出现全面的审查和制定问题。在本报告中,我们通过提供上下文,数学接地和对神经领域的文学进行广泛综述来解决这一限制。本报告涉及两种维度的研究。在第一部分中,我们通过识别神经字段方法的公共组件,包括不同的表示,架构,前向映射和泛化方法来专注于神经字段的技术。在第二部分中,我们专注于神经领域的应用在视觉计算中的不同问题,超越(例如,机器人,音频)。我们的评论显示了历史上和当前化身的视觉计算中已覆盖的主题的广度,展示了神经字段方法所带来的提高的质量,灵活性和能力。最后,我们展示了一个伴随着贡献本综述的生活版本,可以由社区不断更新。
translated by 谷歌翻译
代表物体粒度的场景是场景理解和决策的先决条件。我们提出PrisMoNet,一种基于先前形状知识的新方法,用于学习多对象3D场景分解和来自单个图像的表示。我们的方法学会在平面曲面上分解具有多个对象的合成场景的图像,进入其组成场景对象,并从单个视图推断它们的3D属性。经常性编码器从输入的RGB图像中回归3D形状,姿势和纹理的潜在表示。通过可差异化的渲染,我们培训我们的模型以自我监督方式从RGB-D图像中分解场景。 3D形状在功能空间中连续表示,作为我们以监督方式从示例形状预先训练的符号距离函数。这些形状的前沿提供弱监管信号,以更好地条件挑战整体学习任务。我们评估我们模型在推断3D场景布局方面的准确性,展示其生成能力,评估其对真实图像的概括,并指出了学习的表示的益处。
translated by 谷歌翻译
Compact and accurate representations of 3D shapes are central to many perception and robotics tasks. State-of-the-art learning-based methods can reconstruct single objects but scale poorly to large datasets. We present a novel recursive implicit representation to efficiently and accurately encode large datasets of complex 3D shapes by recursively traversing an implicit octree in latent space. Our implicit Recursive Octree Auto-Decoder (ROAD) learns a hierarchically structured latent space enabling state-of-the-art reconstruction results at a compression ratio above 99%. We also propose an efficient curriculum learning scheme that naturally exploits the coarse-to-fine properties of the underlying octree spatial representation. We explore the scaling law relating latent space dimension, dataset size, and reconstruction accuracy, showing that increasing the latent space dimension is enough to scale to large shape datasets. Finally, we show that our learned latent space encodes a coarse-to-fine hierarchical structure yielding reusable latents across different levels of details, and we provide qualitative evidence of generalization to novel shapes outside the training set.
translated by 谷歌翻译