代表物体粒度的场景是场景理解和决策的先决条件。我们提出PrisMoNet,一种基于先前形状知识的新方法,用于学习多对象3D场景分解和来自单个图像的表示。我们的方法学会在平面曲面上分解具有多个对象的合成场景的图像,进入其组成场景对象,并从单个视图推断它们的3D属性。经常性编码器从输入的RGB图像中回归3D形状,姿势和纹理的潜在表示。通过可差异化的渲染,我们培训我们的模型以自我监督方式从RGB-D图像中分解场景。 3D形状在功能空间中连续表示,作为我们以监督方式从示例形状预先训练的符号距离函数。这些形状的前沿提供弱监管信号,以更好地条件挑战整体学习任务。我们评估我们模型在推断3D场景布局方面的准确性,展示其生成能力,评估其对真实图像的概括,并指出了学习的表示的益处。
translated by 谷歌翻译
我们的方法从单个RGB-D观察中研究了以对象为中心的3D理解的复杂任务。由于这是一个不适的问题,因此现有的方法在3D形状和6D姿势和尺寸估计中都遭受了遮挡的复杂多对象方案的尺寸估计。我们提出了Shapo,这是一种联合多对象检测的方法,3D纹理重建,6D对象姿势和尺寸估计。 Shapo的关键是一条单杆管道,可回归形状,外观和构成潜在的代码以及每个对象实例的口罩,然后以稀疏到密集的方式进一步完善。首先学到了一种新颖的剖面形状和前景数据库,以将对象嵌入各自的形状和外观空间中。我们还提出了一个基于OCTREE的新颖的可区分优化步骤,使我们能够以分析的方式进一步改善对象形状,姿势和外观。我们新颖的联合隐式纹理对象表示使我们能够准确地识别和重建新颖的看不见的对象,而无需访问其3D网格。通过广泛的实验,我们表明我们的方法在模拟的室内场景上进行了训练,可以准确地回归现实世界中新颖物体的形状,外观和姿势,并以最小的微调。我们的方法显着超过了NOCS数据集上的所有基准,对于6D姿势估计,MAP的绝对改进为8%。项目页面:https://zubair-irshad.github.io/projects/shapo.html
translated by 谷歌翻译
我们提出了一种准确的3D重建方法的方法。我们基于神经重建和渲染(例如神经辐射场(NERF))的最新进展的优势。这种方法的一个主要缺点是,它们未能重建对象的任何部分,这些部分在训练图像中不明确可见,这通常是野外图像和视频的情况。当缺乏证据时,可以使用诸如对称的结构先验来完成缺失的信息。但是,在神经渲染中利用此类先验是高度不平凡的:虽然几何和非反射材料可能是对称的,但环境场景的阴影和反射通常不是对称的。为了解决这个问题,我们将软对称性约束应用于3D几何和材料特性,并将外观纳入照明,反照率和反射率。我们在最近引入的CO3D数据集上评估了我们的方法,这是由于重建高度反射材料的挑战,重点是汽车类别。我们表明,它可以用高保真度重建未观察到的区域,并渲染高质量的新型视图图像。
translated by 谷歌翻译
神经隐式表示在新的视图合成和来自多视图图像的高质量3D重建方面显示了其有效性。但是,大多数方法都集中在整体场景表示上,但忽略了其中的各个对象,从而限制了潜在的下游应用程序。为了学习对象组合表示形式,一些作品将2D语义图作为训练中的提示,以掌握对象之间的差异。但是他们忽略了对象几何和实例语义信息之间的牢固联系,这导致了单个实例的不准确建模。本文提出了一个新颖的框架ObjectsDF,以在3D重建和对象表示中构建具有高保真度的对象复合神经隐式表示。观察常规音量渲染管道的歧义,我们通过组合单个对象的签名距离函数(SDF)来对场景进行建模,以发挥明确的表面约束。区分不同实例的关键是重新审视单个对象的SDF和语义标签之间的牢固关联。特别是,我们将语义信息转换为对象SDF的函数,并为场景和对象开发统一而紧凑的表示形式。实验结果表明,ObjectSDF框架在表示整体对象组合场景和各个实例方面的优越性。可以在https://qianyiwu.github.io/objectsdf/上找到代码
translated by 谷歌翻译
我们向渲染和时间(4D)重建人类的渲染和时间(4D)重建的神经辐射场,通过稀疏的摄像机捕获或甚至来自单眼视频。我们的方法将思想与神经场景表示,新颖的综合合成和隐式统计几何人称的人类表示相结合,耦合使用新颖的损失功能。在先前使用符号距离功能表示的结构化隐式人体模型,而不是使用统一的占用率来学习具有统一占用的光域字段。这使我们能够从稀疏视图中稳健地融合信息,并概括超出在训练中观察到的姿势或视图。此外,我们应用几何限制以共同学习观察到的主题的结构 - 包括身体和衣服 - 并将辐射场正规化为几何合理的解决方案。在多个数据集上的广泛实验证明了我们方法的稳健性和准确性,其概括能力显着超出了一系列的姿势和视图,以及超出所观察到的形状的统计外推。
translated by 谷歌翻译
我们提出了IM2NERF,这是一个学习框架,该框架可以预测在野生中给出单个输入图像的连续神经对象表示,仅通过现成的识别方法进行分割输出而受到监督。构建神经辐射场的标准方法利用了多视图的一致性,需要对场景的许多校准视图,这一要求在野外学习大规模图像数据时无法满足。我们通过引入一个模型将输入图像编码到包含对象形状的代码,对象外观代码以及捕获对象图像的估计相机姿势的模型来迈出解决此缺点的一步。我们的模型条件在预测的对象表示上nerf,并使用卷渲染来从新视图中生成图像。我们将模型端到端训练大量输入图像。由于该模型仅配有单视图像,因此问题高度不足。因此,除了在合成的输入视图上使用重建损失外,我们还对新颖的视图使用辅助对手损失。此外,我们利用对象对称性和循环摄像头的姿势一致性。我们在Shapenet数据集上进行了广泛的定量和定性实验,并在开放图像数据集上进行了定性实验。我们表明,在所有情况下,IM2NERF都从野外的单视图像中实现了新视图合成的最新性能。
translated by 谷歌翻译
We propose a differentiable sphere tracing algorithm to bridge the gap between inverse graphics methods and the recently proposed deep learning based implicit signed distance function. Due to the nature of the implicit function, the rendering process requires tremendous function queries, which is particularly problematic when the function is represented as a neural network. We optimize both the forward and backward passes of our rendering layer to make it run efficiently with affordable memory consumption on a commodity graphics card. Our rendering method is fully differentiable such that losses can be directly computed on the rendered 2D observations, and the gradients can be propagated backwards to optimize the 3D geometry. We show that our rendering method can effectively reconstruct accurate 3D shapes from various inputs, such as sparse depth and multi-view images, through inverse optimization. With the geometry based reasoning, our 3D shape prediction methods show excellent generalization capability and robustness against various noises. * Work done while Shaohui Liu was an academic guest at ETH Zurich.
translated by 谷歌翻译
现有的计算机视觉系统可以与人类竞争,以理解物体的可见部分,但在描绘部分被遮挡物体的无形部分时,仍然远远远远没有达到人类。图像Amodal的完成旨在使计算机具有类似人类的Amodal完成功能,以了解完整的对象,尽管该对象被部分遮住。这项调查的主要目的是对图像Amodal完成领域的研究热点,关键技术和未来趋势提供直观的理解。首先,我们对这个新兴领域的最新文献进行了全面的评论,探讨了图像Amodal完成中的三个关键任务,包括Amodal形状完成,Amodal外观完成和订单感知。然后,我们检查了与图像Amodal完成有关的流行数据集及其共同的数据收集方法和评估指标。最后,我们讨论了现实世界中的应用程序和未来的研究方向,以实现图像的完成,从而促进了读者对现有技术和即将到来的研究趋势的挑战的理解。
translated by 谷歌翻译
RGB图像的刚性对象的可伸缩6D构成估计旨在处理多个对象并推广到新物体。我们建立在一个著名的自动编码框架的基础上,以应对对象对称性和缺乏标记的训练数据,我们通过将自动编码器的潜在表示形状分解为形状并构成子空间来实现可伸缩性。潜在形状空间通过对比度度量学习模型不同对象的相似性,并将潜在姿势代码与旋转检索的规范旋转进行比较。由于不同的对象对称会诱导不一致的潜在姿势空间,因此我们用规范旋转重新输入形状表示,以生成形状依赖的姿势代码簿以进行旋转检索。我们在两个基准上显示了最新的性能,其中包含无类别和每日对象的无纹理CAD对象,并通过扩展到跨类别的每日对象的更具挑战性的设置,进一步证明了可扩展性。
translated by 谷歌翻译
对世界的丰富几何理解是许多机器人应用(例如计划和操纵)的重要组成部分。在本文中,我们提出了一个模块化管道,用于鉴于其类别的RGB-D图像的姿势和形状估计。我们方法的核心是一种生成形状模型,我们将其与新的初始化网络集成在一起,并具有可区分的渲染器,以从单个或多个视图中启用6D姿势和形状估计。我们研究了离散的签名距离字段作为有效的形状表示,以通过合成优化快速分析。我们的模块化框架可以实现多视图优化和可扩展性。我们证明了在合成和真实数据的几种实验中,我们的方法比最先进的方法的好处。我们在https://github.com/roym899/sdfest上开放我们的方法。
translated by 谷歌翻译
In recent years, substantial progress has been achieved in learning-based reconstruction of 3D objects. At the same time, generative models were proposed that can generate highly realistic images. However, despite this success in these closely related tasks, texture reconstruction of 3D objects has received little attention from the research community and state-of-the-art methods are either limited to comparably low resolution or constrained experimental setups. A major reason for these limitations is that common representations of texture are inefficient or hard to interface for modern deep learning techniques. In this paper, we propose Texture Fields, a novel texture representation which is based on regressing a continuous 3D function parameterized with a neural network. Our approach circumvents limiting factors like shape discretization and parameterization, as the proposed texture representation is independent of the shape representation of the 3D object. We show that Texture Fields are able to represent high frequency texture and naturally blend with modern deep learning techniques. Experimentally, we find that Texture Fields compare favorably to state-of-the-art methods for conditional texture reconstruction of 3D objects and enable learning of probabilistic generative models for texturing unseen 3D models. We believe that Texture Fields will become an important building block for the next generation of generative 3D models.
translated by 谷歌翻译
Input: 3 views of held-out scene NeRF pixelNeRF Output: Rendered new views Input Novel views Input Novel views Input Novel views Figure 1: NeRF from one or few images. We present pixelNeRF, a learning framework that predicts a Neural Radiance Field (NeRF) representation from a single (top) or few posed images (bottom). PixelNeRF can be trained on a set of multi-view images, allowing it to generate plausible novel view synthesis from very few input images without test-time optimization (bottom left). In contrast, NeRF has no generalization capabilities and performs poorly when only three input views are available (bottom right).
translated by 谷歌翻译
新型视图合成是一个长期存在的问题。在这项工作中,我们考虑了一个问题的变体,在这种变体中,只有几个上下文视图稀疏地涵盖了场景或对象。目的是预测现场的新观点,这需要学习先验。当前的艺术状态基于神经辐射场(NERF),在获得令人印象深刻的结果的同时,这些方法遭受了较长的训练时间,因为它们需要通过每个图像来评估数百万个3D点样品。我们提出了一种仅限2D方法,该方法将多个上下文视图映射,并在神经网络的单个通过中映射到新图像。我们的模型使用由密码簿和变压器模型组成的两阶段体系结构。该密码手册用于将单个图像嵌入较小的潜在空间中,而变压器在此更紧凑的空间中求解了视图综合任务。为了有效地训练我们的模型,我们引入了一种新颖的分支注意机制,该机制使我们不仅可以将相同的模型用于神经渲染,还可以用于摄像头姿势估计。现实世界场景的实验结果表明,与基于NERF的方法相比,我们的方法具有竞争力,而在3D中没有明确推理,并且训练速度更快。
translated by 谷歌翻译
What is a rose, visually? A rose comprises its intrinsics, including the distribution of geometry, texture, and material specific to its object category. With knowledge of these intrinsic properties, we may render roses of different sizes and shapes, in different poses, and under different lighting conditions. In this work, we build a generative model that learns to capture such object intrinsics from a single image, such as a photo of a bouquet. Such an image includes multiple instances of an object type. These instances all share the same intrinsics, but appear different due to a combination of variance within these intrinsics and differences in extrinsic factors, such as pose and illumination. Experiments show that our model successfully learns object intrinsics (distribution of geometry, texture, and material) for a wide range of objects, each from a single Internet image. Our method achieves superior results on multiple downstream tasks, including intrinsic image decomposition, shape and image generation, view synthesis, and relighting.
translated by 谷歌翻译
我们提出了一种新的方法来获取来自在线图像集合的对象表示,从具有不同摄像机,照明和背景的照片捕获任意物体的高质量几何形状和材料属性。这使得各种以各种对象渲染应用诸如新颖的综合,致密和协调的背景组合物,从疯狂的内部输入。使用多级方法延伸神经辐射场,首先推断表面几何形状并优化粗估计的初始相机参数,同时利用粗糙的前景对象掩模来提高训练效率和几何质量。我们还介绍了一种强大的正常估计技术,其消除了几何噪声的效果,同时保持了重要细节。最后,我们提取表面材料特性和环境照明,以球形谐波表示,具有处理瞬态元素的延伸部,例如,锋利的阴影。这些组件的结合导致高度模块化和有效的对象采集框架。广泛的评估和比较证明了我们在捕获高质量的几何形状和外观特性方面的方法,可用于渲染应用。
translated by 谷歌翻译
Unsupervised learning with generative models has the potential of discovering rich representations of 3D scenes. While geometric deep learning has explored 3Dstructure-aware representations of scene geometry, these models typically require explicit 3D supervision. Emerging neural scene representations can be trained only with posed 2D images, but existing methods ignore the three-dimensional structure of scenes. We propose Scene Representation Networks (SRNs), a continuous, 3Dstructure-aware scene representation that encodes both geometry and appearance. SRNs represent scenes as continuous functions that map world coordinates to a feature representation of local scene properties. By formulating the image formation as a differentiable ray-marching algorithm, SRNs can be trained end-toend from only 2D images and their camera poses, without access to depth or shape. This formulation naturally generalizes across scenes, learning powerful geometry and appearance priors in the process. We demonstrate the potential of SRNs by evaluating them for novel view synthesis, few-shot reconstruction, joint shape and appearance interpolation, and unsupervised discovery of a non-rigid face model. 1
translated by 谷歌翻译
单视图重建的方法通常依赖于观点注释,剪影,缺乏背景,同一实例的多个视图,模板形状或对称性。我们通过明确利用不同对象实例的图像之间的一致性来避免所有此类监督和假设。结果,我们的方法可以从描述相同对象类别的大量未标记图像中学习。我们的主要贡献是利用跨境一致性的两种方法:(i)渐进式调理,一种培训策略,以逐步将模型从类别中逐步专业为课程学习方式进行实例; (ii)邻居重建,具有相似形状或纹理的实例之间的损失。对于我们方法的成功也至关重要的是:我们的结构化自动编码体系结构将图像分解为显式形状,纹理,姿势和背景;差异渲染的适应性公式;以及一个新的优化方案在3D和姿势学习之间交替。我们将我们的方法(独角兽)在多样化的合成造型数据集上进行比较,这是需要多种视图作为监督的方法的经典基准 - 以及标准的实数基准(Pascal3d+ Car,Cub,Cub,Cub,Cub),大多数方法都需要已知的模板和Silhouette注释。我们还展示了对更具挑战性的现实收藏集(Compcars,LSUN)的适用性,在该收藏中,剪影不可用,图像没有在物体周围裁剪。
translated by 谷歌翻译
Estimating 6D poses of objects from images is an important problem in various applications such as robot manipulation and virtual reality. While direct regression of images to object poses has limited accuracy, matching rendered images of an object against the input image can produce accurate results. In this work, we propose a novel deep neural network for 6D pose matching named DeepIM. Given an initial pose estimation, our network is able to iteratively refine the pose by matching the rendered image against the observed image. The network is trained to predict a relative pose transformation using a disentangled representation of 3D location and 3D orientation and an iterative training process. Experiments on two commonly used benchmarks for 6D pose estimation demonstrate that DeepIM achieves large improvements over stateof-the-art methods. We furthermore show that DeepIM is able to match previously unseen objects.
translated by 谷歌翻译
从单个RGB图像预测3D形状和静态对象的姿势是现代计算机视觉中的重要研究区域。其应用范围从增强现实到机器人和数字内容创建。通常,通过直接对象形状和姿势预测来执行此任务,该任务是不准确的。有希望的研究方向通过从大规模数据库中检索CAD模型并将它们对准到图像中观察到的对象来确保有意义的形状预测。然而,现有的工作并没有考虑到对象几何,导致对象姿态预测不准确,特别是对于未经看法。在这项工作中,我们演示了如何从RGB图像到呈现的CAD模型的跨域Keypoint匹配如何允许更精确的对象姿态预测与通过直接预测所获得的那些相比。我们进一步表明,关键点匹配不仅可以用于估计对象的姿势,还可以用于修改对象本身的形状。这与单独使用对象检索可以实现的准确性是重要的,其固有地限于可用的CAD模型。允许形状适配桥接检索到的CAD模型与观察到的形状之间的间隙。我们在挑战PIX3D数据集上展示了我们的方法。所提出的几何形状预测将AP网格改善在所看到的物体上的33.2至37.8上的33.2至37.8。未经证明对象的8.2至17.1。此外,在遵循所提出的形状适应时,我们展示了更准确的形状预测而不会与CAD模型紧密匹配。代码在HTTPS://github.com/florianlanger/leveraging_geometry_for_shape_eStimation上公开使用。
translated by 谷歌翻译
We introduce ViewNeRF, a Neural Radiance Field-based viewpoint estimation method that learns to predict category-level viewpoints directly from images during training. While NeRF is usually trained with ground-truth camera poses, multiple extensions have been proposed to reduce the need for this expensive supervision. Nonetheless, most of these methods still struggle in complex settings with large camera movements, and are restricted to single scenes, i.e. they cannot be trained on a collection of scenes depicting the same object category. To address these issues, our method uses an analysis by synthesis approach, combining a conditional NeRF with a viewpoint predictor and a scene encoder in order to produce self-supervised reconstructions for whole object categories. Rather than focusing on high fidelity reconstruction, we target efficient and accurate viewpoint prediction in complex scenarios, e.g. 360{\deg} rotation on real data. Our model shows competitive results on synthetic and real datasets, both for single scenes and multi-instance collections.
translated by 谷歌翻译