最近的工作取得了令人印象深刻的进展,从单眼颜色图像中联合重建手和操纵物体。现有的方法着重于两个替代表示,以参数网格或签名的距离字段(SDF)。一方面,参数模型可以以有限的形状变形和网格分辨率的成本从先验知识中受益。因此,网格模型可能无法精确地重建细节,例如手和物体的接触表面。另一方面,基于SDF的方法可以代表任意细节,但缺乏明确的先验。在这项工作中,我们旨在使用参数表示提供的PRIOR来改善SDF模型。特别是,我们提出了一个联合学习框架,该框架可以解散姿势和形状。我们从参数模型中获取手和对象摆姿势,并使用它们在3D空间中对齐SDF。我们表明,这种对齐的SDF可以更好地专注于重建形状细节,并提高手和物体的重建精度。我们评估了我们的方法,并在挑战性的OBMAN和DEXYCB基准方面证明了对最新技术的显着改善。
translated by 谷歌翻译
从单视图重建3D形状是一个长期的研究问题。在本文中,我们展示了深度隐式地面网络,其可以通过预测底层符号距离场来从2D图像产生高质量的细节的3D网格。除了利用全局图像特征之外,禁止2D图像上的每个3D点的投影位置,并从图像特征映射中提取本地特征。结合全球和局部特征显着提高了符合距离场预测的准确性,特别是对于富含细节的区域。据我们所知,伪装是一种不断捕获从单视图图像中存在于3D形状中存在的孔和薄结构等细节的方法。 Disn在从合成和真实图像重建的各种形状类别上实现最先进的单视性重建性能。代码可在https://github.com/xharlie/disn提供补充可以在https://xharlie.github.io/images/neUrips_2019_Supp.pdf中找到补充
translated by 谷歌翻译
我们的方法从单个RGB-D观察中研究了以对象为中心的3D理解的复杂任务。由于这是一个不适的问题,因此现有的方法在3D形状和6D姿势和尺寸估计中都遭受了遮挡的复杂多对象方案的尺寸估计。我们提出了Shapo,这是一种联合多对象检测的方法,3D纹理重建,6D对象姿势和尺寸估计。 Shapo的关键是一条单杆管道,可回归形状,外观和构成潜在的代码以及每个对象实例的口罩,然后以稀疏到密集的方式进一步完善。首先学到了一种新颖的剖面形状和前景数据库,以将对象嵌入各自的形状和外观空间中。我们还提出了一个基于OCTREE的新颖的可区分优化步骤,使我们能够以分析的方式进一步改善对象形状,姿势和外观。我们新颖的联合隐式纹理对象表示使我们能够准确地识别和重建新颖的看不见的对象,而无需访问其3D网格。通过广泛的实验,我们表明我们的方法在模拟的室内场景上进行了训练,可以准确地回归现实世界中新颖物体的形状,外观和姿势,并以最小的微调。我们的方法显着超过了NOCS数据集上的所有基准,对于6D姿势估计,MAP的绝对改进为8%。项目页面:https://zubair-irshad.github.io/projects/shapo.html
translated by 谷歌翻译
This paper presents an approach that reconstructs a hand-held object from a monocular video. In contrast to many recent methods that directly predict object geometry by a trained network, the proposed approach does not require any learned prior about the object and is able to recover more accurate and detailed object geometry. The key idea is that the hand motion naturally provides multiple views of the object and the motion can be reliably estimated by a hand pose tracker. Then, the object geometry can be recovered by solving a multi-view reconstruction problem. We devise an implicit neural representation-based method to solve the reconstruction problem and address the issues of imprecise hand pose estimation, relative hand-object motion, and insufficient geometry optimization for small objects. We also provide a newly collected dataset with 3D ground truth to validate the proposed approach.
translated by 谷歌翻译
在这项工作中,我们解决了共同跟踪手对象姿势并从野外深度点云序列重建形状的具有挑战性,HandTrackNet,以估计框架间的手动运动。我们的HandTrackNet提出了一个新型的手姿势构成典型化模块,以简化跟踪任务,从而产生准确且稳健的手工关节跟踪。然后,我们的管道通过将预测的手关节转换为基于模板的参数手模型mano来重建全手。对于对象跟踪,我们设计了一个简单而有效的模块,该模块从第一帧估算对象SDF并执行基于优化的跟踪。最后,采用联合优化步骤执行联合手和物体推理,从而减轻了闭塞引起的歧义并进一步完善了手姿势。在训练过程中,整个管道仅看到纯粹的合成数据,这些数据与足够的变化并通过深度模拟合成,以易于概括。整个管道与概括差距有关,因此可以直接传输到真实的野外数据。我们在两个真实的手对象交互数据集上评估我们的方法,例如HO3D和DEXYCB,没有任何填充。我们的实验表明,所提出的方法显着优于先前基于深度的手和对象姿势估计和跟踪方法,以9 fps的帧速率运行。
translated by 谷歌翻译
在这项工作中,我们探索在野外重建手对象交互。这个问题的核心挑战是缺乏适当的3D标记数据。为了克服这个问题,我们提出了一种基于优化的程序,该过程不需要直接的3D监督。我们采用的一般策略是利用所有可用的相关数据(2D边界框,2D手键盘,2D实例掩码,3D对象模型,实验室Mocap)为3D重建提供约束。我们不是单独优化手和对象,我们共同优化它们,这使我们能够基于手动对象触点,碰撞和遮挡来施加额外的约束。我们的方法在史诗厨房和100天的手中数据集中产生令人信服的重建,跨越一系列对象类别。定量地,我们证明我们的方法对现有的实验室设置中的现有方法有利地进行了比较,其中地面真理3D注释提供。
translated by 谷歌翻译
4D隐式表示中的最新进展集中在全球控制形状和运动的情况下,低维潜在向量,这很容易缺少表面细节和累积跟踪误差。尽管许多深层的本地表示显示了3D形状建模的有希望的结果,但它们的4D对应物尚不存在。在本文中,我们通过提出一个新颖的局部4D隐性代表来填补这一空白,以动态穿衣人,名为Lord,具有4D人类建模和局部代表的优点,并实现具有详细的表面变形的高保真重建,例如衣服皱纹。特别是,我们的主要见解是鼓励网络学习本地零件级表示的潜在代码,能够解释本地几何形状和时间变形。为了在测试时间进行推断,我们首先估计内部骨架运动在每个时间步中跟踪本地零件,然后根据不同类型的观察到的数据通过自动编码来优化每个部分的潜在代码。广泛的实验表明,该提出的方法具有强大的代表4D人类的能力,并且在实际应用上胜过最先进的方法,包括从稀疏点,非刚性深度融合(质量和定量)进行的4D重建。
translated by 谷歌翻译
3D互动手重建对于促进人机互动和人类行为理解至关重要。以前的工作在此字段中依赖于辅助输入,例如深度图像,或者如果使用单目的RGB图像,则只能处理单手。当应用于紧密互动时,单手方法倾向于产生碰撞手网格,因为它们无法明确地模拟两只手之间的相互作用。在本文中,我们首次尝试重建从单眼单rgb图像的三维交互手。我们的方法可以通过精确的3D姿势和最小冲突生成3D手网格。这是通过两级框架实现的。具体地,第一阶段采用卷积神经网络来产生容忍碰撞但鼓励姿势准确的手网格的粗略预测。第二阶段通过一系列分解改进逐渐改善碰撞,同时保留3D姿势的精确性。考虑到效率和准确性之间的权衡,我们仔细研究了分解改进的潜在实现。大规模数据集的广泛定量和定性结果,例如Interwand2.6m,证明了所提出的方法的有效性。
translated by 谷歌翻译
本文从单个RGB图像中解决了人手的3D点云重建和3D姿势估计。为此,我们在学习姿势估计的潜在表示时,我们展示了一个用于本地和全球点云重建的新型管道,同时使用3D手模板。为了展示我们的方法,我们介绍了一个新的多视图手姿势数据集,以获得现实世界中的手的完整3D点云。我们新拟议的数据集和四个公共基准测试的实验展示了模型的优势。我们的方法优于3D姿势估计中的竞争对手,同时重建现实看的完整3D手云。
translated by 谷歌翻译
从单眼RGB图像中捕获的3D人类运动捕获符合受试者与复杂且可能可变形的环境的相互作用的相互作用是一个非常具有挑战性,不足和探索不足的问题。现有方法仅薄弱地解决它,并且当人类与场景表面互动时,通常不会建模可能发生的表面变形。相比之下,本文提出了mocapdeform,即单眼3D人体运动捕获的新框架,该框架是第一个明确模拟3D场景的非刚性变形,以改善3D人体姿势估计和可变形环境的重建。 Mocapdeform接受单眼RGB视频,并在相机空间中对齐一个3D场景。它首先使用基于新的射线广播的策略将输入单眼视频中的主题以及密集的触点标签进行定位。接下来,我们的人类环境相互作用约束被利用以共同优化全局3D人类姿势和非刚性表面变形。 Mocapdeform比在几个数据集上的竞争方法获得了更高的精度,包括我们新记录的具有变形背景场景的方法。
translated by 谷歌翻译
本文提出了一种类别级别的6D对象姿势和形状估计方法IDAPS,其允许在类别中跟踪6D姿势并估计其3D形状。我们使用深度图像作为输入开发类别级别自动编码器网络,其中来自自动编码器编码的特征嵌入在类别中对象的姿势。自动编码器可用于粒子过滤器框架,以估计和跟踪类别中的对象的姿势。通过利用基于符号距离函数的隐式形状表示,我们构建延迟网络以估计给定对象的估计姿势的3D形状的潜在表示。然后,估计的姿势和形状可用于以迭代方式互相更新。我们的类别级别6D对象姿势和形状估计流水线仅需要2D检测和分段进行初始化。我们在公开的数据集中评估我们的方法,并展示其有效性。特别是,我们的方法在形状估计上实现了相对高的准确性。
translated by 谷歌翻译
最近,数据驱动的单视图重建方法在建模3D穿着人类中表现出很大的进展。然而,这种方法严重影响了单视图输入所固有的深度模糊和闭塞。在本文中,我们通过考虑一小部分输入视图并调查从这些视图中适当利用信息的最佳策略来解决这个问题。我们提出了一种数据驱动的端到端方法,其从稀疏相机视图重建穿着人的人类的隐式3D表示。具体而言,我们介绍了三个关键组件:首先是使用透视相机模型的空间一致的重建,允许使用人员在输入视图中的任意放置;第二个基于关注的融合层,用于从多个观点来看聚合视觉信息;第三种机制在多视图上下文下编码本地3D模式。在实验中,我们展示了所提出的方法优于定量和定性地在标准数据上表达现有技术。为了展示空间一致的重建,我们将我们的方法应用于动态场景。此外,我们在使用多摄像头平台获取的真实数据上应用我们的方法,并证明我们的方法可以获得与多视图立体声相当的结果,从而迅速更少的视图。
translated by 谷歌翻译
获取房间规模场景的高质量3D重建对于即将到来的AR或VR应用是至关重要的。这些范围从混合现实应用程序进行电话会议,虚拟测量,虚拟房间刨,到机器人应用。虽然使用神经辐射场(NERF)的基于卷的视图合成方法显示有希望再现对象或场景的外观,但它们不会重建实际表面。基于密度的表面的体积表示在使用行进立方体提取表面时导致伪影,因为在优化期间,密度沿着射线累积,并且不在单个样本点处于隔离点。我们建议使用隐式函数(截短的签名距离函数)来代表表面来代表表面。我们展示了如何在NERF框架中纳入此表示,并将其扩展为使用来自商品RGB-D传感器的深度测量,例如Kinect。此外,我们提出了一种姿势和相机细化技术,可提高整体重建质量。相反,与集成NERF的深度前瞻性的并发工作,其专注于新型视图合成,我们的方法能够重建高质量的韵律3D重建。
translated by 谷歌翻译
我们引入了来自多个机器人手的对象的神经隐式表示。多个机器人手之间的不同抓地力被编码为共享的潜在空间。学会了每个潜在矢量以两个3D形状的签名距离函数来解码对象的3D形状和机器人手的3D形状。此外,学会了潜在空间中的距离度量,以保留不同机器人手之间的graSps之间的相似性,其中根据机器人手的接触区域定义了grasps的相似性。该属性使我们能够在包括人手在内的不同抓地力之间转移抓地力,并且GRASP转移有可能在机器人之间分享抓地力,并使机器人能够从人类那里学习掌握技能。此外,我们隐式表示中对象和grasps的编码符号距离函数可用于6D对象姿势估计,并从部分点云中掌握触点优化,这可以在现实世界中启用机器人抓握。
translated by 谷歌翻译
我们提出了一种方法,用于估计具有单个RGB图像的可用3D模型的刚性对象的6DOF姿势。与基于经典对应的方法不同,该方法可以预测输入图像的像素的3D对象坐标,该建议的方法可以预测3D对象坐标在相机frustum中采样的3D查询点。从像素到3D点的移动,这是受到3D重建方法的最新PIFU式方法的启发,可以对整个对象(包括(自我)遮挡部分)进行推理。对于与与像素对齐的图像功能相关的3D查询点,我们训练完全连接的神经网络来预测:(i)相应的3D对象坐标,以及(ii)签名到对象表面的签名距离,首先定义仅适用于地表附近的查询点。我们将该网络实现的映射称为神经通信字段。然后,通过Kabsch-Ransac算法从预测的3D-3D对应关系中稳健地估计对象姿势。所提出的方法在三个BOP数据集上实现了最先进的结果,并且在咬合挑战性案例中表现出了优越。项目网站在:linhuang17.github.io/ncf。
translated by 谷歌翻译
手动相互作用的研究需要为高维多手指模型产生可行的掌握姿势,这通常依赖于分析抓取的合成,从而产生脆弱且不自然的结果。本文介绍了Grasp'd,这是一种与已知模型和视觉输入的可区分接触模拟的掌握方法。我们使用基于梯度的方法作为基于采样的GRASP合成的替代方法,该方法在没有简化假设的情况下失败,例如预先指定的接触位置和本本特征。这样的假设限制了掌握发现,尤其是排除了高接触功率掌握。相比之下,我们基于模拟的方法允许即使对于具有高度自由度的抓地力形态,也可以稳定,高效,物理逼真,高接触抓紧合成。我们确定并解决了对基于梯度的优化进行掌握模拟的挑战,例如非平滑对象表面几何形状,接触稀疏性和坚固的优化景观。 GRASP-D与人类和机器人手模型的分析掌握合成相比,并且结果抓紧超过4倍,超过4倍,从而导致较高的GRASP稳定性。视频和代码可在https://graspd-eccv22.github.io/上获得。
translated by 谷歌翻译
本文解决了从多视频视频中重建动画人类模型的挑战。最近的一些作品提出,将一个非刚性变形的场景分解为规范的神经辐射场和一组变形场,它们映射观察空间指向规范空间,从而使它们能够从图像中学习动态场景。但是,它们代表变形场作为转换矢量场或SE(3)字段,这使得优化高度不受限制。此外,这些表示无法通过输入动议明确控制。取而代之的是,我们基于线性混合剥皮算法引入了一个姿势驱动的变形场,该算法结合了混合重量场和3D人类骨架,以产生观察到的对应对应。由于3D人类骨骼更容易观察到,因此它们可以正规化变形场的学习。此外,可以通过输入骨骼运动来控制姿势驱动的变形场,以生成新的变形字段来动画规范人类模型。实验表明,我们的方法显着优于最近的人类建模方法。该代码可在https://zju3dv.github.io/animatable_nerf/上获得。
translated by 谷歌翻译
我们提出了TOCH,这是一种使用数据先验来完善不正确的3D手对象交互序列的方法。现有的手动跟踪器,尤其是那些依靠很少相机的手动跟踪器,通常会通过手动相交或缺失的触点产生视觉上不切实际的结果。尽管纠正此类错误需要有关交互的时间方面的推理,但大多数以前的作品都集中在静态抓取和触点上。我们方法的核心是Toch Fields,这是一种新颖的时空表示,用于在交互过程中建模手和物体之间的对应关系。 Toch字段是一个以对象为中心的表示,它相对于对象编码手的位置。利用这种新颖的表示,我们学习了具有暂时性的自动编码器的合理象征领域的潜在流形。实验表明,Toch优于最先进的3D手动相互作用模型,这些模型仅限于静态抓取和触点。更重要的是,我们的方法甚至在接触之前和之后都会产生平滑的相互作用。使用单个训练有素的TOCH模型,我们定量和定性地证明了其有用性,可用于纠正现成的RGB/RGB/RGB-D手动重建方法,并跨对象传输grasps。
translated by 谷歌翻译
我们向渲染和时间(4D)重建人类的渲染和时间(4D)重建的神经辐射场,通过稀疏的摄像机捕获或甚至来自单眼视频。我们的方法将思想与神经场景表示,新颖的综合合成和隐式统计几何人称的人类表示相结合,耦合使用新颖的损失功能。在先前使用符号距离功能表示的结构化隐式人体模型,而不是使用统一的占用率来学习具有统一占用的光域字段。这使我们能够从稀疏视图中稳健地融合信息,并概括超出在训练中观察到的姿势或视图。此外,我们应用几何限制以共同学习观察到的主题的结构 - 包括身体和衣服 - 并将辐射场正规化为几何合理的解决方案。在多个数据集上的广泛实验证明了我们方法的稳健性和准确性,其概括能力显着超出了一系列的姿势和视图,以及超出所观察到的形状的统计外推。
translated by 谷歌翻译