4D隐式表示中的最新进展集中在全球控制形状和运动的情况下,低维潜在向量,这很容易缺少表面细节和累积跟踪误差。尽管许多深层的本地表示显示了3D形状建模的有希望的结果,但它们的4D对应物尚不存在。在本文中,我们通过提出一个新颖的局部4D隐性代表来填补这一空白,以动态穿衣人,名为Lord,具有4D人类建模和局部代表的优点,并实现具有详细的表面变形的高保真重建,例如衣服皱纹。特别是,我们的主要见解是鼓励网络学习本地零件级表示的潜在代码,能够解释本地几何形状和时间变形。为了在测试时间进行推断,我们首先估计内部骨架运动在每个时间步中跟踪本地零件,然后根据不同类型的观察到的数据通过自动编码来优化每个部分的潜在代码。广泛的实验表明,该提出的方法具有强大的代表4D人类的能力,并且在实际应用上胜过最先进的方法,包括从稀疏点,非刚性深度融合(质量和定量)进行的4D重建。
translated by 谷歌翻译
本文解决了从多视频视频中重建动画人类模型的挑战。最近的一些作品提出,将一个非刚性变形的场景分解为规范的神经辐射场和一组变形场,它们映射观察空间指向规范空间,从而使它们能够从图像中学习动态场景。但是,它们代表变形场作为转换矢量场或SE(3)字段,这使得优化高度不受限制。此外,这些表示无法通过输入动议明确控制。取而代之的是,我们基于线性混合剥皮算法引入了一个姿势驱动的变形场,该算法结合了混合重量场和3D人类骨架,以产生观察到的对应对应。由于3D人类骨骼更容易观察到,因此它们可以正规化变形场的学习。此外,可以通过输入骨骼运动来控制姿势驱动的变形场,以生成新的变形字段来动画规范人类模型。实验表明,我们的方法显着优于最近的人类建模方法。该代码可在https://zju3dv.github.io/animatable_nerf/上获得。
translated by 谷歌翻译
我们向渲染和时间(4D)重建人类的渲染和时间(4D)重建的神经辐射场,通过稀疏的摄像机捕获或甚至来自单眼视频。我们的方法将思想与神经场景表示,新颖的综合合成和隐式统计几何人称的人类表示相结合,耦合使用新颖的损失功能。在先前使用符号距离功能表示的结构化隐式人体模型,而不是使用统一的占用率来学习具有统一占用的光域字段。这使我们能够从稀疏视图中稳健地融合信息,并概括超出在训练中观察到的姿势或视图。此外,我们应用几何限制以共同学习观察到的主题的结构 - 包括身体和衣服 - 并将辐射场正规化为几何合理的解决方案。在多个数据集上的广泛实验证明了我们方法的稳健性和准确性,其概括能力显着超出了一系列的姿势和视图,以及超出所观察到的形状的统计外推。
translated by 谷歌翻译
在计算机愿景中已经过了很长一段时间的3D表示和人体重建。传统方法主要依赖于参数统计线性模型,将可能的身体的空间限制在线性组合。近来,一些方法才试图利用人体建模的神经隐式表示,同时展示令人印象深刻的结果,它们是通过表示能力的限制或没有物理有意义和可控的。在这项工作中,我们提出了一种用于人体的新型神经隐含表示,其具有完全可分辨:无戒开的形状和姿势潜在空间的优化。与事先工作相反,我们的代表是基于运动模型设计的,这使得可以为姿势动画等任务提供可控制的表示,同时允许为3D配件和姿势跟踪等任务进行整形和姿势。我们的模型可以直接培训和精细调整,直接在具有精心设计的损失的非水密原始数据上。实验展示了SOTA方法的改进的3D重建性能,并显示了我们的方法来形状插值,模型拟合,姿势跟踪和运动重新定位的适用性。
translated by 谷歌翻译
我们呈现Hipnet,一个在许多姿势的多个科目上培训的神经隐式姿势网络。HIPNET可以从姿势特定的细节中解散特定主题细节,有效地使我们能够从一个受试者到另一个受试者的retrarget运动,或通过潜在空间插值在关键帧之间设置动画。为此,我们采用基于分层的基于骨架的表示,以便在规范的未浮现空间上学习符号距离功能。这种基于联合的分解使我们能够代表本地围绕身体关节周围的空间的细微细节。与以前的神经隐式方法不同,需要基础真实SDF进行培训,我们的模型我们只需要一个构成的骨架和点云进行培训,我们没有对传统的参数模型或传统的剥皮方法的依赖。我们在各种单一主题和多主题基准上实现最先进的结果。
translated by 谷歌翻译
为了解决由单眼人类体积捕获中部分观察结果引起的不足问题,我们提出了Avatarcap,这是一个新颖的框架,该框架将可动画的化身引入了可见和不可见区域中高保真重建的捕获管道中。我们的方法首先为该主题创建一个可动画化的化身,从少量(〜20)的3D扫描作为先验。然后给出了该主题的单眼RGB视频,我们的方法集成了图像观察和头像先验的信息,因此无论可见性如何,都会重新构建具有动态细节的高保真3D纹理模型。为了学习有效的头像,仅从少数样品中捕获体积捕获,我们提出了GeoteXavatar,该地理Xavatar利用几何和纹理监督以分解的隐式方式限制了姿势依赖性动力学。进一步提出了一种涉及规范正常融合和重建网络的头像条件的体积捕获方法,以在观察到的区域和无形区域中整合图像观测和化身动力学,以整合图像观测和头像动力学。总体而言,我们的方法可以通过详细的和姿势依赖性动力学实现单眼人体体积捕获,并且实验表明我们的方法优于最新的最新状态。代码可在https://github.com/lizhe00/avatarcap上找到。
translated by 谷歌翻译
我们提出了一种神经动力构造(NDR),这是一种无模板的方法,可从单眼RGB-D摄像机中恢复动态场景的高保真几何形状和动作。在NDR中,我们采用神经隐式函数进行表面表示和渲染,使捕获的颜色和深度可以完全利用以共同优化表面和变形。为了表示和限制非刚性变形,我们提出了一种新型的神经可逆变形网络,以便自动满足任意两个帧之间的循环一致性。考虑到动态场景的表面拓扑可能会随着时间的流逝而发生变化,我们采用一种拓扑感知的策略来构建融合框架的拓扑变化对应关系。NDR还以全球优化的方式进一步完善了相机的姿势。公共数据集和我们收集的数据集的实验表明,NDR的表现优于现有的单眼动态重建方法。
translated by 谷歌翻译
最近,我们看到了照片真实的人类建模和渲染的神经进展取得的巨大进展。但是,将它们集成到现有的下游应用程序中的现有网络管道中仍然具有挑战性。在本文中,我们提出了一种全面的神经方法,用于从密集的多视频视频中对人类表演进行高质量重建,压缩和渲染。我们的核心直觉是用一系列高效的神经技术桥接传统的动画网格工作流程。我们首先引入一个神经表面重建器,以在几分钟内进行高质量的表面产生。它与多分辨率哈希编码的截短签名距离场(TSDF)的隐式体积渲染相结合。我们进一步提出了一个混合神经跟踪器来生成动画网格,该网格将明确的非刚性跟踪与自我监督框架中的隐式动态变形结合在一起。前者将粗糙的翘曲返回到规范空间中,而后者隐含的一个隐含物进一步预测了使用4D哈希编码的位移,如我们的重建器中。然后,我们使用获得的动画网格讨论渲染方案,从动态纹理到各种带宽设置下的Lumigraph渲染。为了在质量和带宽之间取得复杂的平衡,我们通过首先渲染6个虚拟视图来涵盖表演者,然后进行闭塞感知的神经纹理融合,提出一个分层解决方案。我们证明了我们方法在各种平台上的各种基于网格的应用程序和照片真实的自由观看体验中的功效,即,通过移动AR插入虚拟人类的表演,或通过移动AR插入真实环境,或带有VR头戴式的人才表演。
translated by 谷歌翻译
捕获一般的变形场景对于许多计算机图形和视觉应用至关重要,当只有单眼RGB视频可用时,这尤其具有挑战性。竞争方法假设密集的点轨道,3D模板,大规模训练数据集或仅捕获小规模的变形。与这些相反,我们的方法UB4D在挑战性的情况下超过了先前的艺术状态,而没有做出这些假设。我们的技术包括两个新的,在非刚性3D重建的背景下,组件,即1)1)针对非刚性场景的基于坐标的和隐性的神经表示,这使动态场景无偏重建,2)新颖的新颖。动态场景流量损失,可以重建较大的变形。我们的新数据集(将公开可用)的结果表明,就表面重建精度和对大变形的鲁棒性而言,对最新技术的明显改善。访问项目页面https://4dqv.mpi-inf.mpg.de/ub4d/。
translated by 谷歌翻译
我们提出了CrossHuman,这是一种新颖的方法,该方法从参数人类模型和多帧RGB图像中学习了交叉指导,以实现高质量的3D人类重建。为了恢复几何细节和纹理,即使在无形区域中,我们设计了一个重建管道,结合了基于跟踪的方法和无跟踪方法。给定一个单眼RGB序列,我们在整个序列中跟踪参数人模型,与目标框架相对应的点(体素)被参数体运动扭曲为参考框架。在参数体的几何学先验和RGB序列的空间对齐特征的指导下,稳健隐式表面被融合。此外,将多帧变压器(MFT)和一个自我监管的经过修补模块集成到框架中,以放宽参数主体的要求并帮助处理非常松散的布。与以前的作品相比,我们的十字人类可以在可见的和无形区域启用高保真的几何细节和纹理,并提高人类重建的准确性,即使在估计的不准确的参数人类模型下也是如此。实验表明我们的方法达到了最新的(SOTA)性能。
translated by 谷歌翻译
铰接式3D形状重建的事先工作通常依赖于专用传感器(例如,同步的多摄像机系统)或预先构建的3D可变形模型(例如,Smal或SMPL)。这些方法无法在野外扩展到不同的各种物体。我们呈现Banmo,这是一种需要专用传感器的方法,也不需要预定义的模板形状。 Banmo在可怜的渲染框架中从许多单眼休闲视频中建立高保真,铰接式的3D模型(包括形状和动画皮肤的重量)。虽然许多视频的使用提供了更多的相机视图和对象关节的覆盖范围,但它们在建立不同背景,照明条件等方面建立了重大挑战。我们的主要洞察力是合并三所思想学校; (1)使用铰接骨骼和混合皮肤的经典可变形形状模型,(2)可容纳基于梯度的优化,(3)在像素之间产生对应关系的规范嵌入物模型。我们介绍了神经混合皮肤模型,可允许可微分和可逆的铰接变形。与规范嵌入式结合时,这些模型允许我们在跨越可通过循环一致性自我监督的视频中建立密集的对应。在真实和合成的数据集上,Banmo显示比人类和动物的先前工作更高保真3D重建,具有从新颖的观点和姿势的现实图像。项目网页:Banmo-www.github.io。
translated by 谷歌翻译
SMPL(SMPL)的参数3D身体模型仅代表最小衣服的人,并且很难扩展到衣服,因为它们具有固定的网格拓扑和分辨率。为了解决这些局限性,最近的工作使用隐式表面或点云来建模衣服。虽然不受拓扑的限制,但这种方法仍然很难为偏离身体的偏离的衣服建模,例如裙子和连衣裙。这是因为他们依靠身体来通过将衣服表面放置为参考形状。不幸的是,当衣服远离身体时,这个过程的定义很差。此外,他们使用线性混合剥皮来摆姿势,并将皮肤重量与下面的身体部位绑在一起。相比之下,我们在没有规范化的情况下对局部坐标空间中的衣服变形进行了建模。我们还放松皮肤重量以使多个身体部位影响表面。具体而言,我们用粗糙的阶段扩展了基于点的方法,该方法用学习的姿势独立的“粗大形状”代替了规范化,该方法可以捕获裙子(如裙子)的粗糙表面几何形状。然后,我们使用一个网络来完善该网络,该网络会渗透到粗糙表示中的线性混合剥皮权重和姿势依赖的位移。该方法适合符合身体并偏离身体的服装。我们通过从示例中学习特定于人的化身,然后展示如何以新的姿势和动作来展示它们的有用性。我们还表明,该方法可以直接从原始扫描中学习缺少数据,从而大大简化了创建逼真的化身的过程。代码可用于研究目的,可在{\ small \ url {https://qianlim.github.io/skirt}}中使用。
translated by 谷歌翻译
我们提出了一个新颖的范式,该范式是通过单眼视频输入来构建可动画的3D人类代表,以便可以以任何看不见的姿势和观点呈现。我们的方法基于由基于网格的参数3D人类模型操纵的动态神经辐射场(NERF),该模型用作几何代理。以前的方法通常依靠多视频视频或准确的3D几何信息作为其他输入;此外,大多数方法在概括地看不见的姿势时会降解质量。我们确定概括的关键是查询动态NERF的良好输入嵌入:良好的输入嵌入应定义完整量化空间中的注入映射,并在姿势变化下表面网格变形引导。基于此观察结果,我们建议将输入查询嵌入其与局部表面区域的关系,并在网格顶点上跨越一组地球的最近邻居跨越。通过包括位置和相对距离信息,我们的嵌入式定义了距离保存的变形映射,并可以很好地概括为看不见的姿势。为了减少对其他输入的依赖性,我们首先使用现成的工具初始化人均3D网格,然后提出一条管道以共同优化NERF并完善初始网格。广泛的实验表明,我们的方法可以在看不见的姿势和观点下合成合理的人类渲染结果。
translated by 谷歌翻译
最近,基于神经辐射场(NERF)的进步,在3D人类渲染方面取得了迅速的进展,包括新的视图合成和姿势动画。但是,大多数现有方法集中在特定于人的培训上,他们的培训通常需要多视频视频。本文涉及一项新的挑战性任务 - 为在培训中看不见的人提供新颖的观点和新颖的姿势,仅使用多视图图像作为输入。对于此任务,我们提出了一种简单而有效的方法,以训练具有多视图像作为条件输入的可推广的NERF。关键成分是结合规范NERF和体积变形方案的专用表示。使用规范空间使我们的方法能够学习人类的共享特性,并轻松地推广到不同的人。音量变形用于将规范空间与输入和目标图像以及查询图像特征连接起来,以进行辐射和密度预测。我们利用拟合在输入图像上的参数3D人类模型来得出变形,与我们的规范NERF结合使用,它在实践中效果很好。具有新的观点合成和构成动画任务的真实和合成数据的实验共同证明了我们方法的功效。
translated by 谷歌翻译
我们介绍重做,一个类无话的框架来重建RGBD或校准视频的动态对象。与事先工作相比,我们的问题设置是更真实的,更具挑战性的三个原因:1)由于遮挡或相机设置,感兴趣的对象可能永远不会完全可见,但我们的目标是重建完整的形状; 2)我们的目标是处理不同的对象动态,包括刚性运动,非刚性运动和关节; 3)我们的目标是通过一个统一的框架重建不同类别的对象。为了解决这些挑战,我们开发了两种新模块。首先,我们介绍了一个规范的4D隐式功能,它是与聚合的时间视觉线索对齐的像素对齐。其次,我们开发了一个4D变换模块,它捕获对象动态以支持时间传播和聚合。我们研究了重做在综合性RGBD视频数据集风帆-VOS 3D和Deformingthings4d ++上的大量实验中的疗效,以及现实世界视频数据3DPW。我们发现重做优于最先进的动态重建方法。在消融研究中,我们验证每个发达的组件。
translated by 谷歌翻译
我们提出了神经演员(NA),一种用于从任意观点和任意可控姿势的高质量合成人类的新方法。我们的方法是基于最近的神经场景表示和渲染工作,从而从仅从2D图像中学习几何形状和外观的表示。虽然现有的作品令人兴奋地呈现静态场景和动态场景的播放,具有神经隐含方法的照片 - 现实重建和人类的渲染,特别是在用户控制的新颖姿势下,仍然很困难。为了解决这个问题,我们利用一个粗体模型作为将周围的3D空间的代理放入一个规范姿势。神经辐射场从多视图视频输入中了解在规范空间中的姿势依赖几何变形和姿势和视图相关的外观效果。为了综合高保真动态几何和外观的新颖视图,我们利用身体模型上定义的2D纹理地图作为预测残余变形和动态外观的潜变量。实验表明,我们的方法能够比播放的最先进,以及新的姿势合成来实现更好的质量,并且甚至可以概括到新的姿势与训练姿势不同的姿势。此外,我们的方法还支持对合成结果的体形控制。
translated by 谷歌翻译
我们提出了一种从稀疏多视图RGB视频重建可控隐式3D人类模型的新方法。我们的方法在网格表面点上定义神经场景表示,并从人体网格的表面签名距离。我们识别出一种无法区分的问题,当3D空间中的点映射到其最近的网格上的最近的表面点时出现的问题,用于学习表面对齐的神经场景表示。要解决此问题,我们将使用与修改的顶点正常的重心插值提出将点投影到网状表面上。与Zju-Mocap和Human3.6m数据集的实验表明,我们的方法在比现有方法的新颖性和新型姿态合成中实现了更高的质量。我们还表明,我们的方法很容易支持身体形状和衣服的控制。
translated by 谷歌翻译
Humans constantly interact with objects in daily life tasks. Capturing such processes and subsequently conducting visual inferences from a fixed viewpoint suffers from occlusions, shape and texture ambiguities, motions, etc. To mitigate the problem, it is essential to build a training dataset that captures free-viewpoint interactions. We construct a dense multi-view dome to acquire a complex human object interaction dataset, named HODome, that consists of $\sim$75M frames on 10 subjects interacting with 23 objects. To process the HODome dataset, we develop NeuralDome, a layer-wise neural processing pipeline tailored for multi-view video inputs to conduct accurate tracking, geometry reconstruction and free-view rendering, for both human subjects and objects. Extensive experiments on the HODome dataset demonstrate the effectiveness of NeuralDome on a variety of inference, modeling, and rendering tasks. Both the dataset and the NeuralDome tools will be disseminated to the community for further development.
translated by 谷歌翻译
Recent approaches to drape garments quickly over arbitrary human bodies leverage self-supervision to eliminate the need for large training sets. However, they are designed to train one network per clothing item, which severely limits their generalization abilities. In our work, we rely on self-supervision to train a single network to drape multiple garments. This is achieved by predicting a 3D deformation field conditioned on the latent codes of a generative network, which models garments as unsigned distance fields. Our pipeline can generate and drape previously unseen garments of any topology, whose shape can be edited by manipulating their latent codes. Being fully differentiable, our formulation makes it possible to recover accurate 3D models of garments from partial observations -- images or 3D scans -- via gradient descent. Our code will be made publicly available.
translated by 谷歌翻译