我们提出了一种新颖的隐式表示 - 神经半空间表示(NH-REP),以将歧管B-REP固体转换为隐式表示。 NH-REP是一棵布尔树木,建立在由神经网络代表的一组隐式函数上,复合布尔函数能够代表实体几何形状,同时保留锐利的特征。我们提出了一种有效的算法,以从歧管B-Rep固体中提取布尔树,并设计一种基于神经网络的优化方法来计算隐式函数。我们证明了我们的转换算法在一千个流形B-REP CAD模型上提供的高质量,这些模型包含包括NURB在内的各种弯曲斑块,以及我们学习方法优于其他代表性的隐性转换算法,在表面重建,尖锐的特征保存,尖锐的特征保存,尖锐的特征,,符号距离场的近似和对各种表面几何形状的鲁棒性以及由NH-REP支持的一组应用。
translated by 谷歌翻译
Intelligent mesh generation (IMG) refers to a technique to generate mesh by machine learning, which is a relatively new and promising research field. Within its short life span, IMG has greatly expanded the generalizability and practicality of mesh generation techniques and brought many breakthroughs and potential possibilities for mesh generation. However, there is a lack of surveys focusing on IMG methods covering recent works. In this paper, we are committed to a systematic and comprehensive survey describing the contemporary IMG landscape. Focusing on 110 preliminary IMG methods, we conducted an in-depth analysis and evaluation from multiple perspectives, including the core technique and application scope of the algorithm, agent learning goals, data types, targeting challenges, advantages and limitations. With the aim of literature collection and classification based on content extraction, we propose three different taxonomies from three views of key technique, output mesh unit element, and applicable input data types. Finally, we highlight some promising future research directions and challenges in IMG. To maximize the convenience of readers, a project page of IMG is provided at \url{https://github.com/xzb030/IMG_Survey}.
translated by 谷歌翻译
三维(3D)建筑模型在许多现实世界应用中发挥着越来越竞触的作用,同时获得紧凑的建筑物的表现仍然是一个公开的问题。在本文中,我们提出了一种从点云中重建紧凑,水密的多边形建筑模型的新框架。我们的框架包括三个组件:(a)通过自适应空间分区生成一个单元复合物,该分区提供了作为候选集的多面体嵌入; (b)由深度神经网络学习隐式领域,促进建立占用估计; (c)配制马尔可夫随机场,通过组合优化提取建筑物的外表面。我们在形状重建,表面逼近和几何简化中评估和比较我们的最先进方法的方法。综合性和现实世界点云的实验表明,通过我们的神经引导策略,可以获得高质量的建筑模型,在保真度,紧凑性和计算效率方面具有显着的优势。我们的方法显示了对噪声和测量不足的鲁棒性,并且可以从合成扫描到现实世界测量中直接概括。
translated by 谷歌翻译
从嘈杂,不均匀和无知点云中的表面重建是计算机视觉和图形中的一个令人迷人但具有挑战性的问题。随着3D扫描技术的创新,强烈希望直接转换原始扫描数据,通常具有严重噪声,进入歧管三角网格。现有的基于学习的方法旨在学习零级曲面对底层形状进行的隐式功能。然而,大多数人都无法获得嘈杂和稀疏点云的理想结果,限制在实践中。在本文中,我们介绍了神经IML,一种新的方法,它直接从未引起的原始点云学习抗噪声符号距离功能(SDF)。通过最大限度地减少由隐式移动最小二乘函数获得的损耗,我们的方法通过最小化了自我监督的方式,从原始点云中从原始点云中的底层SDF,而不是明确地学习前提。 (IML)和我们的神经网络另一个,我们的预测器的梯度定义了便于计算IML的切线束。我们证明,当几个SDFS重合时,我们的神经网络可以预测符号隐式功能,其零电平集用作底层表面的良好近似。我们对各种基准进行广泛的实验,包括合成扫描和现实世界扫描,以表现出从各种投入重建忠实形状的能力,特别是对于具有噪音或间隙的点云。
translated by 谷歌翻译
The recent neural implicit representation-based methods have greatly advanced the state of the art for solving the long-standing and challenging problem of reconstructing a discrete surface from a sparse point cloud. These methods generally learn either a binary occupancy or signed/unsigned distance field (SDF/UDF) as surface representation. However, all the existing SDF/UDF-based methods use neural networks to implicitly regress the distance in a purely data-driven manner, thus limiting the accuracy and generalizability to some extent. In contrast, we propose the first geometry-guided method for UDF and its gradient estimation that explicitly formulates the unsigned distance of a query point as the learnable affine averaging of its distances to the tangent planes of neighbouring points. Besides, we model the local geometric structure of the input point clouds by explicitly learning a quadratic polynomial for each point. This not only facilitates upsampling the input sparse point cloud but also naturally induces unoriented normal, which further augments UDF estimation. Finally, to extract triangle meshes from the predicted UDF we propose a customized edge-based marching cube module. We conduct extensive experiments and ablation studies to demonstrate the significant advantages of our method over state-of-the-art methods in terms of reconstruction accuracy, efficiency, and generalizability. The source code is publicly available at https://github.com/rsy6318/GeoUDF.
translated by 谷歌翻译
我们为3D形状生成(称为SDF-Stylegan)提供了一种基于stylegan2的深度学习方法,目的是降低生成形状和形状集合之间的视觉和几何差异。我们将stylegan2扩展到3D世代,并利用隐式签名的距离函数(SDF)作为3D形状表示,并引入了两个新颖的全球和局部形状鉴别器,它们区分了真实和假的SDF值和梯度,以显着提高形状的几何形状和视觉质量。我们进一步补充了基于阴影图像的FR \'Echet Inception距离(FID)分数的3D生成模型的评估指标,以更好地评估生成形状的视觉质量和形状分布。对形状生成的实验证明了SDF-Stylegan比最先进的表现出色。我们进一步证明了基于GAN倒置的各种任务中SDF-Stylegan的功效,包括形状重建,部分点云的形状完成,基于单图像的形状形状生成以及形状样式编辑。广泛的消融研究证明了我们框架设计的功效。我们的代码和训练有素的模型可在https://github.com/zhengxinyang/sdf-stylegan上找到。
translated by 谷歌翻译
三角形网格是3D对象的最受欢迎的表示,但是许多网格表面都包含拓扑奇异性,代表了显示或进一步正确处理它们的挑战。这样的奇异性是通过扫描过程或通过变形转换(例如偏离设置)创建的网格表面中存在的自我交流。网格折叠包括一个特殊的筛网表面自相交的情况,其中3D模型的面相交并逆转,相对于网格表面的展开部分。提出了一种识别和修复网格表面折叠的新方法,该方法利用了折叠的结构特征,以有效地检测折叠区域。检测后,卸下折叠,并根据3D模型的几何形状填补了折叠的任何空白。所提出的方法直接适用于简单的网格表面表示,而它不执行3D网格的任何嵌入(即Voxelization,投影)。该方法的目标是以最有效的方式以保留原始结构的方式促进网格退化程序。
translated by 谷歌翻译
表面重建是3D图形的基本问题。在本文中,我们提出了一种基于学习的基于云层云层的隐式表面重建的方法,没有正常。我们的方法是在潜在的能源理论中受到高斯引理的启发,这为指标功能提供了明确的整体公式。我们设计一个新颖的深神经网络,以执行表面积分,并从未定向和嘈杂的点云学习修改的指示灯。我们连接具有不同尺度的特征,以便准确地对整数的贡献。此外,我们提出了一种新颖的表面元件特征提取器来学习局部形状特性。实验表明,我们的方法从具有不同噪声尺度的点云的点云产生具有高正常一致性的平滑表面,并与当前的数据驱动和非数据驱动的方法相比,实现了最先进的重建性能。
translated by 谷歌翻译
本地化隐式功能的最新进展使神经隐式表示能够可扩展到大型场景。然而,这些方法采用的3D空间的定期细分未能考虑到表面占用的稀疏性和几何细节的变化粒度。结果,其内存占地面积与输入体积均别较大,即使在适度密集的分解中也导致禁止的计算成本。在这项工作中,我们为3D表面,编码OCTFIELD提供了一种学习的分层隐式表示,允许具有低内存和计算预算的复杂曲面的高精度编码。我们方法的关键是仅在感兴趣的表面周围分发本地隐式功能的3D场景的自适应分解。我们通过引入分层Octree结构来实现这一目标,以根据表面占用和部件几何形状的丰富度自适应地细分3D空间。随着八十六是离散和不可分辨性的,我们进一步提出了一种新颖的等级网络,其模拟八偏细胞的细分作为概率的过程,并以可差的方式递归地编码和解码八叠结构和表面几何形状。我们展示了Octfield的一系列形状建模和重建任务的价值,显示出在替代方法方面的优越性。
translated by 谷歌翻译
近年来,由于其表达力和灵活性,神经隐式表示在3D重建中获得了普及。然而,神经隐式表示的隐式性质导致缓慢的推理时间并且需要仔细初始化。在本文中,我们重新审视经典且无处不在的点云表示,并使用泊松表面重建(PSR)的可分辨率配方引入可分化的点对网格层,其允许给予定向的GPU加速的指示灯的快速解决方案点云。可微分的PSR层允许我们通过隐式指示器字段有效地和分散地桥接与3D网格的显式3D点表示,从而实现诸如倒角距离的表面重建度量的端到端优化。因此,点和网格之间的这种二元性允许我们以面向点云表示形状,这是显式,轻量级和富有表现力的。与神经内隐式表示相比,我们的形状 - 点(SAP)模型更具可解释,轻量级,并通过一个级别加速推理时间。与其他显式表示相比,如点,补丁和网格,SA​​P产生拓扑无关的水密歧管表面。我们展示了SAP对无知点云和基于学习的重建的表面重建任务的有效性。
translated by 谷歌翻译
神经隐式表示将表面编码为应用于空间坐标的神经网络的水平集,已证明对优化,压缩和生成3D几何形状非常有效。尽管这些表示易于拟合,但尚不清楚如何最好地评估形状上的几何查询,例如与射线相交或找到最接近的点。主要的方法是鼓励网络具有签名的距离属性。但是,该属性通常仅持有大约导致鲁棒性问题,并且仅在培训结束时持有,从而抑制了在损失功能中使用查询的使用。取而代之的是,这项工作提出了一种新的方法,可以直接针对广泛的现有架构进行一般神经隐式功能进行查询。我们的关键工具是使用自动算术规则将范围分析应用于神经网络,以限制网络在区域上的输出。我们对神经网络的范围分析进行了研究,并确定了非常有效的仿射算术变体。我们使用所得边界来开发几何查询,包括射线铸造,交叉测试,构建空间层次结构,快速网格提取,最接近的点评估,评估批量特性等。我们的疑问可以在GPU上有效评估,并在随机定位的网络上提供具体的准确性,从而可以在培训目标及其他方面使用。我们还展示了对反渲染的初步应用。
translated by 谷歌翻译
在本文中,我们提出了一种新的点云表示。与传统点云表示不同,其中每个点仅表示3D空间中的位置或局部平面,神经点中的每个点通过神经领域表示局部连续几何形状。因此,神经点可以表达更复杂的细节,因此具有更强的表示能力。具有含有丰富的几何细节的高分辨率表面培训神经点,使得训练模型具有足够的各种形状的表达能力。具体地,我们通过2D参数域和3D本地补丁之间的局部同构来提取点上的深度局部特征并通过局部同构构造神经字段。在决赛中,局部神经领域集成在一起以形成全局表面。实验结果表明,神经点具有强大的代表能力,展示了优异的鲁棒性和泛化能力。通过神经点,我们可以用任意分辨率重新采样点云,并优于最先进的点云上采样方法,通过大边距。
translated by 谷歌翻译
我们引入了一个神经隐式框架,该框架利用神经网络的可区分特性和点采样表面的离散几何形状,以将它们作为神经隐含函数的级别集近似。为了训练神经隐式函数,我们提出了近似签名距离函数的损失功能,并允许具有高阶导数的术语,例如曲率的主要方向之间的对齐方式,以了解更多几何细节。在训练过程中,我们考虑了基于点采样表面的曲率的不均匀采样策略,以优先考虑点更多的几何细节。与以前的方法相比,这种抽样意味着在保持几何准确性的同时更快地学习。我们还介绍了神经表面(例如正常矢量和曲率)的分析差异几何公式。
translated by 谷歌翻译
本文解决了从给定稀疏点云生成密集点云的问题,以模拟物体/场景的底层几何结构。为了解决这一具有挑战性的问题,我们提出了一种新的基于端到端学习的框架。具体地,通过利用线性近似定理,我们首先明确地制定问题,这逐到确定内插权和高阶近似误差。然后,我们设计轻量级神经网络,通过分析输入点云的局部几何体,自适应地学习统一和分类的插值权重以及高阶改进。所提出的方法可以通过显式制定来解释,因此比现有的更高的内存效率。与仅用于预定义和固定的上采样因子的现有方法的鲜明对比,所提出的框架仅需要一个单一的神经网络,一次性训练可以在典型范围内处理各种上采样因子,这是真实的-world应用程序。此外,我们提出了一种简单但有效的培训策略来推动这种灵活的能力。此外,我们的方法可以很好地处理非均匀分布和嘈杂的数据。合成和现实世界数据的广泛实验证明了所提出的方法在定量和定性的最先进方法上的优越性。
translated by 谷歌翻译
网状denoising是数字几何处理中的基本问题。它试图消除表面噪声,同时尽可能准确地保留表面固有信号。尽管传统的智慧是基于专门的先验来平稳表面的,但基于学习的方法在概括和自动化方面取得了巨大的成功。在这项工作中,我们对网格denoising的进步进行了全面的综述,其中包含传统的几何方法和最近的基于学习的方法。首先,要熟悉读者的denoising任务,我们总结了网格denoising中的四个常见问题。然后,我们提供了两种现有的脱氧方法的分类。此外,分别详细介绍和分析了三个重要类别,包括优化,过滤器和基于数据驱动的技术。说明了定性和定量比较,以证明最先进的去核方法的有效性。最后,指出未来工作的潜在方向来解决这些方法的共同问题。这项工作还建立了网格denoising基准测试,未来的研究人员将通过最先进的方法轻松方便地评估其方法。
translated by 谷歌翻译
最近的工作建模3D开放表面培训深度神经网络以近似无符号距离字段(UDF)并隐含地代表形状。要将此表示转换为显式网格,它们要么使用计算上昂贵的方法来对表面的致密点云采样啮合,或者通过将其膨胀到符号距离字段(SDF)中来扭曲表面。相比之下,我们建议直接将深度UDFS直接以延伸行进立方体的开放表面,通过本地检测表面交叉。我们的方法是幅度的序列,比啮合致密点云,比膨胀开口表面更准确。此外,我们使我们的表面提取可微分,并显示它可以帮助稀疏监控信号。
translated by 谷歌翻译
卷积神经网络(CNNS)在2D计算机视觉中取得了很大的突破。然而,它们的不规则结构使得难以在网格上直接利用CNNS的潜力。细分表面提供分层多分辨率结构,其中闭合的2 - 歧管三角网格中的每个面正恰好邻近三个面。本文推出了这两种观察,介绍了具有环形细分序列连接的3D三角形网格的创新和多功能CNN框架。在2D图像中的网格面和像素之间进行类比允许我们呈现网状卷积操作者以聚合附近面的局部特征。通过利用面部街区,这种卷积可以支持标准的2D卷积网络概念,例如,可变内核大小,步幅和扩张。基于多分辨率层次结构,我们利用汇集层,将四个面均匀地合并成一个和上采样方法,该方法将一个面分为四个。因此,许多流行的2D CNN架构可以容易地适应处理3D网格。可以通过自我参数化来回收具有任意连接的网格,以使循环细分序列连接,使子变量是一般的方法。广泛的评估和各种应用展示了SubDIVNet的有效性和效率。
translated by 谷歌翻译
我们提出了一个Point2cyl,一个监督网络将原始3D点云变换到一组挤出缸。从原始几何到CAD模型的逆向工程是能够在形状编辑软件中操纵3D数据的重要任务,从而在许多下游应用中扩展其使用。特别地,具有挤出圆柱序列的CAD模型的形式 - 2D草图加上挤出轴和范围 - 以及它们的布尔组合不仅广泛应用于CAD社区/软件,而且相比具有很大的形状表现性具有有限类型的基元(例如,平面,球形和汽缸)。在这项工作中,我们介绍了一种神经网络,通过首先学习底层几何代理来解决挤出汽缸分解问题的挤出圆柱分解问题。精确地,我们的方法首先预测每点分割,基础/桶标签和法线,然后估计可分离和闭合形式配方中的底层挤出参数。我们的实验表明,我们的方法展示了两个最近CAD数据集,融合画廊和Deepcad上的最佳性能,我们进一步展示了逆向工程和编辑的方法。
translated by 谷歌翻译
反向工程从其他表示形式进行的CAD形状是许多下游应用程序的重要几何处理步骤。在这项工作中,我们介绍了一种新型的神经网络体系结构,以解决这项具有挑战性的任务,并使用可编辑,受约束的棱镜CAD模型近似平滑的签名距离函数。在训练过程中,我们的方法通过将形状分解为一系列2D轮廓图像和1D包膜函数来重建体素空间中的输入几何形状。然后可以以不同的方式重新组合这些,以允许定义几何损失函数。在推断期间,我们通过首先搜索2D约束草图的数据库来获取CAD数据,以找到近似配置文件图像的曲线,然后将它们挤出并使用布尔操作来构建最终的CAD模型。我们的方法比其他方法更接近目标形状,并输出与现有CAD软件兼容的高度可编辑的约束参数草图。
translated by 谷歌翻译