神经隐式表示将表面编码为应用于空间坐标的神经网络的水平集,已证明对优化,压缩和生成3D几何形状非常有效。尽管这些表示易于拟合,但尚不清楚如何最好地评估形状上的几何查询,例如与射线相交或找到最接近的点。主要的方法是鼓励网络具有签名的距离属性。但是,该属性通常仅持有大约导致鲁棒性问题,并且仅在培训结束时持有,从而抑制了在损失功能中使用查询的使用。取而代之的是,这项工作提出了一种新的方法,可以直接针对广泛的现有架构进行一般神经隐式功能进行查询。我们的关键工具是使用自动算术规则将范围分析应用于神经网络,以限制网络在区域上的输出。我们对神经网络的范围分析进行了研究,并确定了非常有效的仿射算术变体。我们使用所得边界来开发几何查询,包括射线铸造,交叉测试,构建空间层次结构,快速网格提取,最接近的点评估,评估批量特性等。我们的疑问可以在GPU上有效评估,并在随机定位的网络上提供具体的准确性,从而可以在培训目标及其他方面使用。我们还展示了对反渲染的初步应用。
translated by 谷歌翻译
Neural signed distance functions (SDFs) are emerging as an effective representation for 3D shapes. State-of-theart methods typically encode the SDF with a large, fixedsize neural network to approximate complex shapes with implicit surfaces. Rendering with these large networks is, however, computationally expensive since it requires many forward passes through the network for every pixel, making these representations impractical for real-time graphics. We introduce an efficient neural representation that, for the first time, enables real-time rendering of high-fidelity neural SDFs, while achieving state-of-the-art geometry reconstruction quality. We represent implicit surfaces using an octree-based feature volume which adaptively fits shapes with multiple discrete levels of detail (LODs), and enables continuous LOD with SDF interpolation. We further develop an efficient algorithm to directly render our novel neural SDF representation in real-time by querying only the necessary LODs with sparse octree traversal. We show that our representation is 2-3 orders of magnitude more efficient in terms of rendering speed compared to previous works. Furthermore, it produces state-of-the-art reconstruction quality for complex shapes under both 3D geometric and 2D image-space metrics.
translated by 谷歌翻译
机器学习的最近进步已经创造了利用一类基于坐标的神经网络来解决视觉计算问题的兴趣,该基于坐标的神经网络在空间和时间跨空间和时间的场景或对象的物理属性。我们称之为神经领域的这些方法已经看到在3D形状和图像的合成中成功应用,人体的动画,3D重建和姿势估计。然而,由于在短时间内的快速进展,许多论文存在,但尚未出现全面的审查和制定问题。在本报告中,我们通过提供上下文,数学接地和对神经领域的文学进行广泛综述来解决这一限制。本报告涉及两种维度的研究。在第一部分中,我们通过识别神经字段方法的公共组件,包括不同的表示,架构,前向映射和泛化方法来专注于神经字段的技术。在第二部分中,我们专注于神经领域的应用在视觉计算中的不同问题,超越(例如,机器人,音频)。我们的评论显示了历史上和当前化身的视觉计算中已覆盖的主题的广度,展示了神经字段方法所带来的提高的质量,灵活性和能力。最后,我们展示了一个伴随着贡献本综述的生活版本,可以由社区不断更新。
translated by 谷歌翻译
综合照片 - 现实图像和视频是计算机图形的核心,并且是几十年的研究焦点。传统上,使用渲染算法(如光栅化或射线跟踪)生成场景的合成图像,其将几何形状和材料属性的表示为输入。统称,这些输入定义了实际场景和呈现的内容,并且被称为场景表示(其中场景由一个或多个对象组成)。示例场景表示是具有附带纹理的三角形网格(例如,由艺术家创建),点云(例如,来自深度传感器),体积网格(例如,来自CT扫描)或隐式曲面函数(例如,截短的符号距离)字段)。使用可分辨率渲染损耗的观察结果的这种场景表示的重建被称为逆图形或反向渲染。神经渲染密切相关,并将思想与经典计算机图形和机器学习中的思想相结合,以创建用于合成来自真实观察图像的图像的算法。神经渲染是朝向合成照片现实图像和视频内容的目标的跨越。近年来,我们通过数百个出版物显示了这一领域的巨大进展,这些出版物显示了将被动组件注入渲染管道的不同方式。这种最先进的神经渲染进步的报告侧重于将经典渲染原则与学习的3D场景表示结合的方法,通常现在被称为神经场景表示。这些方法的一个关键优势在于它们是通过设计的3D-一致,使诸如新颖的视点合成捕获场景的应用。除了处理静态场景的方法外,我们还涵盖了用于建模非刚性变形对象的神经场景表示...
translated by 谷歌翻译
We propose a differentiable sphere tracing algorithm to bridge the gap between inverse graphics methods and the recently proposed deep learning based implicit signed distance function. Due to the nature of the implicit function, the rendering process requires tremendous function queries, which is particularly problematic when the function is represented as a neural network. We optimize both the forward and backward passes of our rendering layer to make it run efficiently with affordable memory consumption on a commodity graphics card. Our rendering method is fully differentiable such that losses can be directly computed on the rendered 2D observations, and the gradients can be propagated backwards to optimize the 3D geometry. We show that our rendering method can effectively reconstruct accurate 3D shapes from various inputs, such as sparse depth and multi-view images, through inverse optimization. With the geometry based reasoning, our 3D shape prediction methods show excellent generalization capability and robustness against various noises. * Work done while Shaohui Liu was an academic guest at ETH Zurich.
translated by 谷歌翻译
我们引入了一个新的隐式形状表示,称为基于射线的隐式函数(PRIF)。与基于处理空间位置的签名距离函数(SDF)的大多数现有方法相反,我们的表示形式在定向射线上运行。具体而言,PRIF的配制是直接产生给定输入射线的表面命中点,而无需昂贵的球体跟踪操作,因此可以有效地提取形状提取和可区分的渲染。我们证明,经过编码PRIF的神经网络在各种任务中取得了成功,包括单个形状表示,类别形状的生成,从稀疏或嘈杂的观察到形状完成,相机姿势估计的逆渲染以及带有颜色的神经渲染。
translated by 谷歌翻译
重建反向渲染技术的最新趋势使用神经网络将3D表示作为神经领域。基于NERF的技术将多层感知器(MLP)拟合到一组训练图像,以估算一个辐射场字段,然后可以通过卷渲染算法从任何虚拟摄像机呈现。这些表示形式的主要缺点是缺乏定义明确的表面和非交互式渲染时间,因为必须查询宽大和深的MLP,每个框架必须查询数百万次。这些限制最近被单一克服了,但是设法同时完成了这一限制,从而打开了新的用例。我们提出了Kiloneus,这是一种新的神经对象表示,可以在交互式框架速率下的路径跟踪场景中渲染。 Kiloneus可以在共享场景中对神经和经典原语之间的逼真的光相互作用进行模拟,并且它可以实时执行,并有足够的空间进行未来的优化和扩展。
translated by 谷歌翻译
各系列扩张是几个世纪以来的应用数学和工程的基石。在本文中,我们从现代机器学习角度重新审视了泰勒系列扩张。具体地,我们介绍了快速连续的卷积泰勒变换(FC2T2),这是快速多极法(FMM)的变型,其允许在连续空间中有效地逼近低维卷积操作者。我们建立在FMM上,这是一种近似算法,其降低了从O(nm)到o(n + m)的n身体问题的计算复杂度,并在例如,在例如,在例如,在例如,在ev中找到应用。粒子模拟。作为中间步骤,FMM为网格上的每个单元产生串联扩展,我们引入直接作用于该表示的算法。这些算法分析但大致计算了反向衰减算法的前向和后向通过所需的数量,因此可以在神经网络中用作(隐式)层。具体地,我们引入了一种根隐性层,其输出表面法线和对象距离以及输出给定3D姿势的辐射场的渲染的积分隐式层。在机器学习的背景下,可以理解为N $和M $的$和M $分别被理解为型号参数和模型评估的数量,这对于需要在计算机视觉和图形中普遍存在的重复函数评估的应用程序,与常规神经网络不同网络,该技术以参数优雅地介绍了本文。对于某些应用,这导致拖鞋的200倍减少,与最先进的方法以合理的或不存在的准确性损失相比。
translated by 谷歌翻译
Physically based rendering of complex scenes can be prohibitively costly with a potentially unbounded and uneven distribution of complexity across the rendered image. The goal of an ideal level of detail (LoD) method is to make rendering costs independent of the 3D scene complexity, while preserving the appearance of the scene. However, current prefiltering LoD methods are limited in the appearances they can support due to their reliance of approximate models and other heuristics. We propose the first comprehensive multi-scale LoD framework for prefiltering 3D environments with complex geometry and materials (e.g., the Disney BRDF), while maintaining the appearance with respect to the ray-traced reference. Using a multi-scale hierarchy of the scene, we perform a data-driven prefiltering step to obtain an appearance phase function and directional coverage mask at each scale. At the heart of our approach is a novel neural representation that encodes this information into a compact latent form that is easy to decode inside a physically based renderer. Once a scene is baked out, our method requires no original geometry, materials, or textures at render time. We demonstrate that our approach compares favorably to state-of-the-art prefiltering methods and achieves considerable savings in memory for complex scenes.
translated by 谷歌翻译
由于其成功在从稀疏的输入图像集合中合成了场景的新颖视图,最近越来越受欢迎。到目前为止,通过通用密度函数建模了神经体积渲染技术的几何形状。此外,使用通向嘈杂的任意水平函数的任意水平集合来提取几何形状本身,通常是低保真重建。本文的目标是改善神经体积渲染中的几何形象和重建。我们通过将体积密度建模为几何形状来实现这一点。这与以前的工作与体积密度的函数建模几何。更详细地,我们将音量密度函数定义为Laplace的累积分发功能(CDF)应用于符号距离功能(SDF)表示。这种简单的密度表示有三个好处:(i)它为神经体积渲染过程中学到的几何形状提供了有用的电感偏差; (ii)它促进了缺陷近似误差的束缚,导致观看光线的准确采样。精确的采样对于提供几何和光线的精确耦合非常重要; (iii)允许高效无监督的脱位形状和外观在体积渲染中。将此新密度表示应用于具有挑战性的场景多视图数据集生产了高质量的几何重建,表现优于相关的基线。此外,由于两者的解剖学,场景之间的切换形状和外观是可能的。
translated by 谷歌翻译
在视觉计算中,3D几何形状以许多不同的形式表示,包括网格,点云,体素电网,水平集和深度图像。每个表示都适用于不同的任务,从而使一个表示形式转换为另一个表示(前向地图)是一个重要且常见的问题。我们提出了全向距离字段(ODF),这是一种新的3D形状表示形式,该表示通过将深度从任何观看方向从任何3D位置存储到对象的表面来编码几何形状。由于射线是ODF的基本单元,因此可以轻松地从通用的3D表示和点云等常见的3D表示。与限制代表封闭表面的水平集方法不同,ODF是未签名的,因此可以对开放表面进行建模(例如服装)。我们证明,尽管在遮挡边界处存在固有的不连续性,但可以通过神经网络(Neururodf)有效地学习ODF。我们还引入了有效的前向映射算法,以转换odf to&从常见的3D表示。具体而言,我们引入了一种有效的跳跃立方体算法,用于从ODF生成网格。实验表明,神经模型可以通过过度拟合单个对象学会学会捕获高质量的形状,并学会概括对共同的形状类别。
translated by 谷歌翻译
我们提出了一种方法,可以在神经SDF渲染器中相对于几何场景参数自动计算正确的梯度。最近基于物理的可区分渲染技术用于网格采样来处理不连续性,尤其是在对象轮廓上,但是SDF没有简单的参数形式,可用于采样。取而代之的是,我们的方法建立在区域采样技术的基础上,并为SDFS开发了连续的翘曲功能,以解决这些不连续性。我们的方法利用了在SDF中编码的表面的距离,并在球形示踪剂点上使用正交来计算此翘曲功能。我们进一步表明,这可以通过对要点进行次采样来使神经SDF的方法进行。我们可区分的渲染器可用于优化从多视图图像中的神经形状,并对最近基于SDF的反向渲染方法产生可比较的3D重建,而无需2D分割掩码来指导几何形状优化,而无需对几何形状进行体积近似。
translated by 谷歌翻译
基于简单的扩散层对空间通信非常有效的洞察力,我们对3D表面进行深度学习的新的通用方法。由此产生的网络是自动稳健的,以改变表面的分辨率和样品 - 一种对实际应用至关重要的基本属性。我们的网络可以在各种几何表示上离散化,例如三角网格或点云,甚至可以在一个表示上培训然后应用于另一个表示。我们优化扩散的空间支持,作为连续网络参数,从纯粹的本地到完全全球范围,从而消除手动选择邻域大小的负担。该方法中唯一的其他成分是在每个点处独立地施加的多层的Perceptron,以及用于支持方向滤波器的空间梯度特征。由此产生的网络简单,坚固,高效。这里,我们主要专注于三角网格表面,并且展示了各种任务的最先进的结果,包括表面分类,分割和非刚性对应。
translated by 谷歌翻译
我们介绍了NeuralVDB,它通过利用机器学习的最新进步来提高现有的行业标准,以有效地存储稀疏体积数据,表示VDB。我们的新型混合数据结构可以通过数量级来减少VDB体积的内存足迹,同时保持其灵活性,并且只会产生一个小(用户控制的)压缩误差。具体而言,NeuralVDB用多个层次神经网络替换了浅和宽VDB树结构的下节点,这些神经网络分别通过神经分类器和回归器分别编码拓扑和价值信息。这种方法已证明可以最大化压缩比,同时保持高级VDB数据结构提供的空间适应性。对于稀疏的签名距离字段和密度量,我们已经观察到从已经压缩的VDB输入中的$ 10 \ times $ $ $ \ $ 100 \ $ 100 \ $ 100 \ $ 100 \ $ 100的压缩比,几乎没有可视化伪像。我们还展示了其在动画稀疏体积上的应用如何加速训练并产生时间连贯的神经网络。
translated by 谷歌翻译
深度生成模型的最新进展导致了3D形状合成的巨大进展。虽然现有模型能够合成表示为体素,点云或隐式功能的形状,但这些方法仅间接强制执行最终3D形状表面的合理性。在这里,我们提出了一种直接将对抗训练施加到物体表面的3D形状合成框架(Surfgen)。我们的方法使用可分解的球面投影层来捕获并表示隐式3D发生器的显式零IsoSurface作为在单元球上定义的功能。通过在对手设置中用球形CNN处理3D对象表面的球形表示,我们的发电机可以更好地学习自然形状表面的统计数据。我们在大规模形状数据集中评估我们的模型,并证明了端到端训练的模型能够产生具有不同拓扑的高保真3D形状。
translated by 谷歌翻译
我们介绍了一种新的神经表面重建方法,称为Neus,用于重建具有高保真的对象和场景,从2D图像输入。现有的神经表面重建方法,例如DVR和IDR,需要前景掩模作为监控,容易被捕获在局部最小值中,因此与具有严重自动遮挡或薄结构的物体的重建斗争。同时,新型观测合成的最近神经方法,例如Nerf及其变体,使用体积渲染来产生具有优化的稳健性的神经场景表示,即使对于高度复杂的物体。然而,从该学习的内隐式表示提取高质量表面是困难的,因为表示表示没有足够的表面约束。在Neus中,我们建议将表面代表为符号距离功能(SDF)的零级集,并开发一种新的卷渲染方法来训练神经SDF表示。我们观察到传统的体积渲染方法导致表面重建的固有的几何误差(即偏置),因此提出了一种新的制剂,其在第一阶的第一阶偏差中没有偏置,因此即使没有掩码监督,也导致更准确的表面重建。 DTU数据集的实验和BlendedMVS数据集显示,Neus在高质量的表面重建中优于最先进的,特别是对于具有复杂结构和自动闭塞的物体和场景。
translated by 谷歌翻译
虚拟内容创建和互动在现代3D应用中起着重要作用,例如AR和VR。从真实场景中恢复详细的3D模型可以显着扩大其应用程序的范围,并在计算机视觉和计算机图形社区中进行了数十年的研究。我们提出了基于体素的隐式表面表示Vox-Surf。我们的Vox-Surf将空间分为有限的体素。每个体素将几何形状和外观信息存储在其角顶点。 Vox-Surf得益于从体素表示继承的稀疏性,几乎适用于任何情况,并且可以轻松地从多个视图图像中训练。我们利用渐进式训练程序逐渐提取重要体素,以进一步优化,以便仅保留有效的体素,从而大大减少了采样点的数量并增加了渲染速度。细素还可以视为碰撞检测的边界量。该实验表明,与其他方法相比,Vox-Surf表示可以学习精致的表面细节和准确的颜色,并以更少的记忆力和更快的渲染速度来学习。我们还表明,Vox-Surf在场景编辑和AR应用中可能更实用。
translated by 谷歌翻译
Implicit fields have been very effective to represent and learn 3D shapes accurately. Signed distance fields and occupancy fields are the preferred representations, both with well-studied properties, despite their restriction to closed surfaces. Several other variations and training principles have been proposed with the goal to represent all classes of shapes. In this paper, we develop a novel and yet fundamental representation by considering the unit vector field defined on 3D space: at each point in $\mathbb{R}^3$ the vector points to the closest point on the surface. We theoretically demonstrate that this vector field can be easily transformed to surface density by applying the vector field divergence. Unlike other standard representations, it directly encodes an important physical property of the surface, which is the surface normal. We further show the advantages of our vector field representation, specifically in learning general (open, closed, or multi-layered) surfaces as well as piecewise planar surfaces. We compare our method on several datasets including ShapeNet where the proposed new neural implicit field shows superior accuracy in representing any type of shape, outperforming other standard methods. The code will be released at https://github.com/edomel/ImplicitVF
translated by 谷歌翻译
Neural Radiance Field (NeRF), a new novel view synthesis with implicit scene representation has taken the field of Computer Vision by storm. As a novel view synthesis and 3D reconstruction method, NeRF models find applications in robotics, urban mapping, autonomous navigation, virtual reality/augmented reality, and more. Since the original paper by Mildenhall et al., more than 250 preprints were published, with more than 100 eventually being accepted in tier one Computer Vision Conferences. Given NeRF popularity and the current interest in this research area, we believe it necessary to compile a comprehensive survey of NeRF papers from the past two years, which we organized into both architecture, and application based taxonomies. We also provide an introduction to the theory of NeRF based novel view synthesis, and a benchmark comparison of the performance and speed of key NeRF models. By creating this survey, we hope to introduce new researchers to NeRF, provide a helpful reference for influential works in this field, as well as motivate future research directions with our discussion section.
translated by 谷歌翻译
We propose an analysis-by-synthesis method for fast multi-view 3D reconstruction of opaque objects with arbitrary materials and illumination. State-of-the-art methods use both neural surface representations and neural rendering. While flexible, neural surface representations are a significant bottleneck in optimization runtime. Instead, we represent surfaces as triangle meshes and build a differentiable rendering pipeline around triangle rasterization and neural shading. The renderer is used in a gradient descent optimization where both a triangle mesh and a neural shader are jointly optimized to reproduce the multi-view images. We evaluate our method on a public 3D reconstruction dataset and show that it can match the reconstruction accuracy of traditional baselines and neural approaches while surpassing them in optimization runtime. Additionally, we investigate the shader and find that it learns an interpretable representation of appearance, enabling applications such as 3D material editing.
translated by 谷歌翻译