We propose an analysis-by-synthesis method for fast multi-view 3D reconstruction of opaque objects with arbitrary materials and illumination. State-of-the-art methods use both neural surface representations and neural rendering. While flexible, neural surface representations are a significant bottleneck in optimization runtime. Instead, we represent surfaces as triangle meshes and build a differentiable rendering pipeline around triangle rasterization and neural shading. The renderer is used in a gradient descent optimization where both a triangle mesh and a neural shader are jointly optimized to reproduce the multi-view images. We evaluate our method on a public 3D reconstruction dataset and show that it can match the reconstruction accuracy of traditional baselines and neural approaches while surpassing them in optimization runtime. Additionally, we investigate the shader and find that it learns an interpretable representation of appearance, enabling applications such as 3D material editing.
translated by 谷歌翻译
综合照片 - 现实图像和视频是计算机图形的核心,并且是几十年的研究焦点。传统上,使用渲染算法(如光栅化或射线跟踪)生成场景的合成图像,其将几何形状和材料属性的表示为输入。统称,这些输入定义了实际场景和呈现的内容,并且被称为场景表示(其中场景由一个或多个对象组成)。示例场景表示是具有附带纹理的三角形网格(例如,由艺术家创建),点云(例如,来自深度传感器),体积网格(例如,来自CT扫描)或隐式曲面函数(例如,截短的符号距离)字段)。使用可分辨率渲染损耗的观察结果的这种场景表示的重建被称为逆图形或反向渲染。神经渲染密切相关,并将思想与经典计算机图形和机器学习中的思想相结合,以创建用于合成来自真实观察图像的图像的算法。神经渲染是朝向合成照片现实图像和视频内容的目标的跨越。近年来,我们通过数百个出版物显示了这一领域的巨大进展,这些出版物显示了将被动组件注入渲染管道的不同方式。这种最先进的神经渲染进步的报告侧重于将经典渲染原则与学习的3D场景表示结合的方法,通常现在被称为神经场景表示。这些方法的一个关键优势在于它们是通过设计的3D-一致,使诸如新颖的视点合成捕获场景的应用。除了处理静态场景的方法外,我们还涵盖了用于建模非刚性变形对象的神经场景表示...
translated by 谷歌翻译
我们提出了一种有效的方法,用于从多视图图像观察中联合优化拓扑,材料和照明。与最近的多视图重建方法不同,通常在神经网络中产生纠缠的3D表示,我们将三角形网格输出具有空间不同的材料和环境照明,这些方法可以在任何传统的图形引擎中未修改。我们利用近期工作在可差异化的渲染中,基于坐标的网络紧凑地代表体积纹理,以及可微分的游行四边形,以便直接在表面网上直接实现基于梯度的优化。最后,我们介绍了环境照明的分流和近似的可分辨率配方,以有效地回收全频照明。实验表明我们的提取模型用于高级场景编辑,材料分解和高质量的视图插值,全部以三角形的渲染器(光栅化器和路径示踪剂)的交互式速率运行。
translated by 谷歌翻译
尽管通过自学意识到,基于多层感知的方法在形状和颜色恢复方面取得了令人鼓舞的结果,但在学习深层隐式表面表示方面通常会遭受沉重的计算成本。由于渲染每个像素需要一个向前的网络推断,因此合成整个图像是非常密集的。为了应对这些挑战,我们提出了一种有效的粗到精细方法,以从本文中从多视图中恢复纹理网格。具体而言,采用可区分的泊松求解器来表示对象的形状,该求解器能够产生拓扑 - 敏捷和水密表面。为了说明深度信息,我们通过最小化渲染网格与多视图立体声预测深度之间的差异来优化形状几何形状。与形状和颜色的隐式神经表示相反,我们引入了一种基于物理的逆渲染方案,以共同估计环境照明和对象的反射率,该方案能够实时呈现高分辨率图像。重建的网格的质地是从可学习的密集纹理网格中插值的。我们已经对几个多视图立体数据集进行了广泛的实验,其有希望的结果证明了我们提出的方法的功效。该代码可在https://github.com/l1346792580123/diff上找到。
translated by 谷歌翻译
In this work we address the challenging problem of multiview 3D surface reconstruction. We introduce a neural network architecture that simultaneously learns the unknown geometry, camera parameters, and a neural renderer that approximates the light reflected from the surface towards the camera. The geometry is represented as a zero level-set of a neural network, while the neural renderer, derived from the rendering equation, is capable of (implicitly) modeling a wide set of lighting conditions and materials. We trained our network on real world 2D images of objects with different material properties, lighting conditions, and noisy camera initializations from the DTU MVS dataset. We found our model to produce state of the art 3D surface reconstructions with high fidelity, resolution and detail.
translated by 谷歌翻译
获取房间规模场景的高质量3D重建对于即将到来的AR或VR应用是至关重要的。这些范围从混合现实应用程序进行电话会议,虚拟测量,虚拟房间刨,到机器人应用。虽然使用神经辐射场(NERF)的基于卷的视图合成方法显示有希望再现对象或场景的外观,但它们不会重建实际表面。基于密度的表面的体积表示在使用行进立方体提取表面时导致伪影,因为在优化期间,密度沿着射线累积,并且不在单个样本点处于隔离点。我们建议使用隐式函数(截短的签名距离函数)来代表表面来代表表面。我们展示了如何在NERF框架中纳入此表示,并将其扩展为使用来自商品RGB-D传感器的深度测量,例如Kinect。此外,我们提出了一种姿势和相机细化技术,可提高整体重建质量。相反,与集成NERF的深度前瞻性的并发工作,其专注于新型视图合成,我们的方法能够重建高质量的韵律3D重建。
translated by 谷歌翻译
where the highest resolution is required, using facial performance capture as a case in point.
translated by 谷歌翻译
We present a method that achieves state-of-the-art results for synthesizing novel views of complex scenes by optimizing an underlying continuous volumetric scene function using a sparse set of input views. Our algorithm represents a scene using a fully-connected (nonconvolutional) deep network, whose input is a single continuous 5D coordinate (spatial location (x, y, z) and viewing direction (θ, φ)) and whose output is the volume density and view-dependent emitted radiance at that spatial location. We synthesize views by querying 5D coordinates along camera rays and use classic volume rendering techniques to project the output colors and densities into an image. Because volume rendering is naturally differentiable, the only input required to optimize our representation is a set of images with known camera poses. We describe how to effectively optimize neural radiance fields to render photorealistic novel views of scenes with complicated geometry and appearance, and demonstrate results that outperform prior work on neural rendering and view synthesis. View synthesis results are best viewed as videos, so we urge readers to view our supplementary video for convincing comparisons.
translated by 谷歌翻译
Unsupervised learning with generative models has the potential of discovering rich representations of 3D scenes. While geometric deep learning has explored 3Dstructure-aware representations of scene geometry, these models typically require explicit 3D supervision. Emerging neural scene representations can be trained only with posed 2D images, but existing methods ignore the three-dimensional structure of scenes. We propose Scene Representation Networks (SRNs), a continuous, 3Dstructure-aware scene representation that encodes both geometry and appearance. SRNs represent scenes as continuous functions that map world coordinates to a feature representation of local scene properties. By formulating the image formation as a differentiable ray-marching algorithm, SRNs can be trained end-toend from only 2D images and their camera poses, without access to depth or shape. This formulation naturally generalizes across scenes, learning powerful geometry and appearance priors in the process. We demonstrate the potential of SRNs by evaluating them for novel view synthesis, few-shot reconstruction, joint shape and appearance interpolation, and unsupervised discovery of a non-rigid face model. 1
translated by 谷歌翻译
View-dependent effects such as reflections pose a substantial challenge for image-based and neural rendering algorithms. Above all, curved reflectors are particularly hard, as they lead to highly non-linear reflection flows as the camera moves. We introduce a new point-based representation to compute Neural Point Catacaustics allowing novel-view synthesis of scenes with curved reflectors, from a set of casually-captured input photos. At the core of our method is a neural warp field that models catacaustic trajectories of reflections, so complex specular effects can be rendered using efficient point splatting in conjunction with a neural renderer. One of our key contributions is the explicit representation of reflections with a reflection point cloud which is displaced by the neural warp field, and a primary point cloud which is optimized to represent the rest of the scene. After a short manual annotation step, our approach allows interactive high-quality renderings of novel views with accurate reflection flow. Additionally, the explicit representation of reflection flow supports several forms of scene manipulation in captured scenes, such as reflection editing, cloning of specular objects, reflection tracking across views, and comfortable stereo viewing. We provide the source code and other supplemental material on https://repo-sam.inria.fr/ fungraph/neural_catacaustics/
translated by 谷歌翻译
最近,我们看到了照片真实的人类建模和渲染的神经进展取得的巨大进展。但是,将它们集成到现有的下游应用程序中的现有网络管道中仍然具有挑战性。在本文中,我们提出了一种全面的神经方法,用于从密集的多视频视频中对人类表演进行高质量重建,压缩和渲染。我们的核心直觉是用一系列高效的神经技术桥接传统的动画网格工作流程。我们首先引入一个神经表面重建器,以在几分钟内进行高质量的表面产生。它与多分辨率哈希编码的截短签名距离场(TSDF)的隐式体积渲染相结合。我们进一步提出了一个混合神经跟踪器来生成动画网格,该网格将明确的非刚性跟踪与自我监督框架中的隐式动态变形结合在一起。前者将粗糙的翘曲返回到规范空间中,而后者隐含的一个隐含物进一步预测了使用4D哈希编码的位移,如我们的重建器中。然后,我们使用获得的动画网格讨论渲染方案,从动态纹理到各种带宽设置下的Lumigraph渲染。为了在质量和带宽之间取得复杂的平衡,我们通过首先渲染6个虚拟视图来涵盖表演者,然后进行闭塞感知的神经纹理融合,提出一个分层解决方案。我们证明了我们方法在各种平台上的各种基于网格的应用程序和照片真实的自由观看体验中的功效,即,通过移动AR插入虚拟人类的表演,或通过移动AR插入真实环境,或带有VR头戴式的人才表演。
translated by 谷歌翻译
机器学习的最近进步已经创造了利用一类基于坐标的神经网络来解决视觉计算问题的兴趣,该基于坐标的神经网络在空间和时间跨空间和时间的场景或对象的物理属性。我们称之为神经领域的这些方法已经看到在3D形状和图像的合成中成功应用,人体的动画,3D重建和姿势估计。然而,由于在短时间内的快速进展,许多论文存在,但尚未出现全面的审查和制定问题。在本报告中,我们通过提供上下文,数学接地和对神经领域的文学进行广泛综述来解决这一限制。本报告涉及两种维度的研究。在第一部分中,我们通过识别神经字段方法的公共组件,包括不同的表示,架构,前向映射和泛化方法来专注于神经字段的技术。在第二部分中,我们专注于神经领域的应用在视觉计算中的不同问题,超越(例如,机器人,音频)。我们的评论显示了历史上和当前化身的视觉计算中已覆盖的主题的广度,展示了神经字段方法所带来的提高的质量,灵活性和能力。最后,我们展示了一个伴随着贡献本综述的生活版本,可以由社区不断更新。
translated by 谷歌翻译
我们介绍了Sparseneus,这是一种基于神经渲染的新方法,用于从多视图图像中进行表面重建的任务。当仅提供稀疏图像作为输入时,此任务变得更加困难,这种情况通常会产生不完整或失真的结果。此外,他们无法概括看不见的新场景会阻碍他们在实践中的应用。相反,Sparseneus可以概括为新场景,并与稀疏的图像(仅2或3)良好合作。 Sparseneus采用签名的距离函数(SDF)作为表面表示,并通过引入代码编码通用表面预测的几何形状来从图像特征中学习可概括的先验。此外,引入了几种策略,以有效利用稀疏视图来进行高质量重建,包括1)多层几何推理框架以粗略的方式恢复表面; 2)多尺度的颜色混合方案,以实现更可靠的颜色预测; 3)一种一致性意识的微调方案,以控制由遮挡和噪声引起的不一致区域。广泛的实验表明,我们的方法不仅胜过最先进的方法,而且表现出良好的效率,可推广性和灵活性。
translated by 谷歌翻译
基于坐标的神经网络参数化隐式表面已成为几何形状的有效表示。它们有效地充当参数水平集,其零级集合定义了感兴趣的表面。我们提出了一个框架,该框架允许将定义的三角形网格定义的变形操作应用于此类隐式表面。这些操作中的几个可以看作是能量最小化的问题,这些问题会诱导显式表面上的瞬时流场。我们的方法使用流场通过扩展级别集的经典理论来变形参数隐式表面。我们还通过形式化与级别集理论的联系,来得出有关可区分表面提取和渲染的现有方法的合并视图。我们表明,这些方法从理论中偏离,我们的方法对诸如表面平滑,均值流动,反向渲染和用户定义的编辑等应用进行了改进。
translated by 谷歌翻译
隐式辐射功能作为重建和渲染3D场景的照片真实观点的强大场景表示形式出现。但是,这些表示的编辑性差。另一方面,诸如多边形网格之类的显式表示允许易于编辑,但不适合重建动态的人头中的准确细节,例如精细的面部特征,头发,牙齿,牙齿和眼睛。在这项工作中,我们提出了神经参数化(NEP),这是一种混合表示,提供了隐式和显式方法的优势。 NEP能够进行照片真实的渲染,同时允许对场景的几何形状和外观进行细粒度编辑。我们首先通过将3D几何形状参数化为2D纹理空间来解开几何形状和外观。我们通过引入显式线性变形层来启用几何编辑性。变形由一组稀疏的密钥点控制,可以明确和直观地移位以编辑几何形状。对于外观,我们开发了一个混合2D纹理,该纹理由明确的纹理图组成,以易于编辑和隐式视图以及时间相关的残差,以建模时间和视图变化。我们将我们的方法与几个重建和编辑基线进行比较。结果表明,NEP在保持高编辑性的同时达到了几乎相同的渲染精度。
translated by 谷歌翻译
神经隐式表面已成为多视图3D重建的重要技术,但它们的准确性仍然有限。在本文中,我们认为这来自难以学习和呈现具有神经网络的高频纹理。因此,我们建议在不同视图中添加标准神经渲染优化直接照片一致性术语。直观地,我们优化隐式几何体,以便以一致的方式扭曲彼此的视图。我们证明,两个元素是这种方法成功的关键:(i)使用沿着每条光线的预测占用和3D点的预测占用和法线来翘曲整个补丁,并用稳健的结构相似度测量它们的相似性; (ii)以这种方式处理可见性和遮挡,使得不正确的扭曲不会给出太多的重要性,同时鼓励重建尽可能完整。我们评估了我们的方法,在标准的DTU和EPFL基准上被称为NeuralWarp,并表明它在两个数据集上以超过20%重建的艺术态度优于未经监督的隐式表面。
translated by 谷歌翻译
神经辐射场(NERFS)表现出惊人的能力,可以从新颖的观点中综合3D场景的图像。但是,他们依赖于基于射线行进的专门体积渲染算法,这些算法与广泛部署的图形硬件的功能不匹配。本文介绍了基于纹理多边形的新的NERF表示形式,该表示可以有效地与标准渲染管道合成新型图像。 NERF表示为一组多边形,其纹理代表二进制不相处和特征向量。用Z-Buffer对多边形的传统渲染产生了每个像素的图像,该图像由在片段着色器中运行的小型,观点依赖的MLP来解释,以产生最终的像素颜色。这种方法使NERF可以使用传统的Polygon栅格化管道渲染,该管道提供了庞大的像素级并行性,从而在包括移动电话在内的各种计算平台上实现了交互式帧速率。
translated by 谷歌翻译
Neural implicit 3D representations have emerged as a powerful paradigm for reconstructing surfaces from multiview images and synthesizing novel views. Unfortunately, existing methods such as DVR or IDR require accurate perpixel object masks as supervision. At the same time, neural radiance fields have revolutionized novel view synthesis. However, NeRF's estimated volume density does not admit accurate surface reconstruction. Our key insight is that implicit surface models and radiance fields can be formulated in a unified way, enabling both surface and volume rendering using the same model. This unified perspective enables novel, more efficient sampling procedures and the ability to reconstruct accurate surfaces without input masks. We compare our method on the DTU, BlendedMVS, and a synthetic indoor dataset. Our experiments demonstrate that we outperform NeRF in terms of reconstruction quality while performing on par with IDR without requiring masks.
translated by 谷歌翻译
We propose a differentiable sphere tracing algorithm to bridge the gap between inverse graphics methods and the recently proposed deep learning based implicit signed distance function. Due to the nature of the implicit function, the rendering process requires tremendous function queries, which is particularly problematic when the function is represented as a neural network. We optimize both the forward and backward passes of our rendering layer to make it run efficiently with affordable memory consumption on a commodity graphics card. Our rendering method is fully differentiable such that losses can be directly computed on the rendered 2D observations, and the gradients can be propagated backwards to optimize the 3D geometry. We show that our rendering method can effectively reconstruct accurate 3D shapes from various inputs, such as sparse depth and multi-view images, through inverse optimization. With the geometry based reasoning, our 3D shape prediction methods show excellent generalization capability and robustness against various noises. * Work done while Shaohui Liu was an academic guest at ETH Zurich.
translated by 谷歌翻译
虚拟内容创建和互动在现代3D应用中起着重要作用,例如AR和VR。从真实场景中恢复详细的3D模型可以显着扩大其应用程序的范围,并在计算机视觉和计算机图形社区中进行了数十年的研究。我们提出了基于体素的隐式表面表示Vox-Surf。我们的Vox-Surf将空间分为有限的体素。每个体素将几何形状和外观信息存储在其角顶点。 Vox-Surf得益于从体素表示继承的稀疏性,几乎适用于任何情况,并且可以轻松地从多个视图图像中训练。我们利用渐进式训练程序逐渐提取重要体素,以进一步优化,以便仅保留有效的体素,从而大大减少了采样点的数量并增加了渲染速度。细素还可以视为碰撞检测的边界量。该实验表明,与其他方法相比,Vox-Surf表示可以学习精致的表面细节和准确的颜色,并以更少的记忆力和更快的渲染速度来学习。我们还表明,Vox-Surf在场景编辑和AR应用中可能更实用。
translated by 谷歌翻译