本地化隐式功能的最新进展使神经隐式表示能够可扩展到大型场景。然而,这些方法采用的3D空间的定期细分未能考虑到表面占用的稀疏性和几何细节的变化粒度。结果,其内存占地面积与输入体积均别较大,即使在适度密集的分解中也导致禁止的计算成本。在这项工作中,我们为3D表面,编码OCTFIELD提供了一种学习的分层隐式表示,允许具有低内存和计算预算的复杂曲面的高精度编码。我们方法的关键是仅在感兴趣的表面周围分发本地隐式功能的3D场景的自适应分解。我们通过引入分层Octree结构来实现这一目标,以根据表面占用和部件几何形状的丰富度自适应地细分3D空间。随着八十六是离散和不可分辨性的,我们进一步提出了一种新颖的等级网络,其模拟八偏细胞的细分作为概率的过程,并以可差的方式递归地编码和解码八叠结构和表面几何形状。我们展示了Octfield的一系列形状建模和重建任务的价值,显示出在替代方法方面的优越性。
translated by 谷歌翻译
Training parts from ShapeNet. (b) t-SNE plot of part embeddings. (c) Reconstructing entire scenes with Local Implicit Grids Figure 1:We learn an embedding of parts from objects in ShapeNet [3] using a part autoencoder with an implicit decoder. We show that this representation of parts is generalizable across object categories, and easily scalable to large scenes. By localizing implicit functions in a grid, we are able to reconstruct entire scenes from points via optimization of the latent grid.
translated by 谷歌翻译
Compact and accurate representations of 3D shapes are central to many perception and robotics tasks. State-of-the-art learning-based methods can reconstruct single objects but scale poorly to large datasets. We present a novel recursive implicit representation to efficiently and accurately encode large datasets of complex 3D shapes by recursively traversing an implicit octree in latent space. Our implicit Recursive Octree Auto-Decoder (ROAD) learns a hierarchically structured latent space enabling state-of-the-art reconstruction results at a compression ratio above 99%. We also propose an efficient curriculum learning scheme that naturally exploits the coarse-to-fine properties of the underlying octree spatial representation. We explore the scaling law relating latent space dimension, dataset size, and reconstruction accuracy, showing that increasing the latent space dimension is enough to scale to large shape datasets. Finally, we show that our learned latent space encodes a coarse-to-fine hierarchical structure yielding reusable latents across different levels of details, and we provide qualitative evidence of generalization to novel shapes outside the training set.
translated by 谷歌翻译
Generative models, as an important family of statistical modeling, target learning the observed data distribution via generating new instances. Along with the rise of neural networks, deep generative models, such as variational autoencoders (VAEs) and generative adversarial network (GANs), have made tremendous progress in 2D image synthesis. Recently, researchers switch their attentions from the 2D space to the 3D space considering that 3D data better aligns with our physical world and hence enjoys great potential in practice. However, unlike a 2D image, which owns an efficient representation (i.e., pixel grid) by nature, representing 3D data could face far more challenges. Concretely, we would expect an ideal 3D representation to be capable enough to model shapes and appearances in details, and to be highly efficient so as to model high-resolution data with fast speed and low memory cost. However, existing 3D representations, such as point clouds, meshes, and recent neural fields, usually fail to meet the above requirements simultaneously. In this survey, we make a thorough review of the development of 3D generation, including 3D shape generation and 3D-aware image synthesis, from the perspectives of both algorithms and more importantly representations. We hope that our discussion could help the community track the evolution of this field and further spark some innovative ideas to advance this challenging task.
translated by 谷歌翻译
Neural signed distance functions (SDFs) are emerging as an effective representation for 3D shapes. State-of-theart methods typically encode the SDF with a large, fixedsize neural network to approximate complex shapes with implicit surfaces. Rendering with these large networks is, however, computationally expensive since it requires many forward passes through the network for every pixel, making these representations impractical for real-time graphics. We introduce an efficient neural representation that, for the first time, enables real-time rendering of high-fidelity neural SDFs, while achieving state-of-the-art geometry reconstruction quality. We represent implicit surfaces using an octree-based feature volume which adaptively fits shapes with multiple discrete levels of detail (LODs), and enables continuous LOD with SDF interpolation. We further develop an efficient algorithm to directly render our novel neural SDF representation in real-time by querying only the necessary LODs with sparse octree traversal. We show that our representation is 2-3 orders of magnitude more efficient in terms of rendering speed compared to previous works. Furthermore, it produces state-of-the-art reconstruction quality for complex shapes under both 3D geometric and 2D image-space metrics.
translated by 谷歌翻译
Figure 1: DeepSDF represents signed distance functions (SDFs) of shapes via latent code-conditioned feed-forward decoder networks. Above images are raycast renderings of DeepSDF interpolating between two shapes in the learned shape latent space. Best viewed digitally.
translated by 谷歌翻译
Point cloud completion is a generation and estimation issue derived from the partial point clouds, which plays a vital role in the applications in 3D computer vision. The progress of deep learning (DL) has impressively improved the capability and robustness of point cloud completion. However, the quality of completed point clouds is still needed to be further enhanced to meet the practical utilization. Therefore, this work aims to conduct a comprehensive survey on various methods, including point-based, convolution-based, graph-based, and generative model-based approaches, etc. And this survey summarizes the comparisons among these methods to provoke further research insights. Besides, this review sums up the commonly used datasets and illustrates the applications of point cloud completion. Eventually, we also discussed possible research trends in this promptly expanding field.
translated by 谷歌翻译
Figure 1. This paper introduces Local Deep Implicit Functions, a 3D shape representation that decomposes an input shape (mesh on left in every triplet) into a structured set of shape elements (colored ellipses on right) whose contributions to an implicit surface reconstruction (middle) are represented by latent vectors decoded by a deep network. Project video and website at ldif.cs.princeton.edu.
translated by 谷歌翻译
We propose a novel method for 3D shape completion from a partial observation of a point cloud. Existing methods either operate on a global latent code, which limits the expressiveness of their model, or autoregressively estimate the local features, which is highly computationally extensive. Instead, our method estimates the entire local feature field by a single feedforward network by formulating this problem as a tensor completion problem on the feature volume of the object. Due to the redundancy of local feature volumes, this tensor completion problem can be further reduced to estimating the canonical factors of the feature volume. A hierarchical variational autoencoder (VAE) with tiny MLPs is used to probabilistically estimate the canonical factors of the complete feature volume. The effectiveness of the proposed method is validated by comparing it with the state-of-the-art method quantitatively and qualitatively. Further ablation studies also show the need to adopt a hierarchical architecture to capture the multimodal distribution of possible shapes.
translated by 谷歌翻译
Intelligent mesh generation (IMG) refers to a technique to generate mesh by machine learning, which is a relatively new and promising research field. Within its short life span, IMG has greatly expanded the generalizability and practicality of mesh generation techniques and brought many breakthroughs and potential possibilities for mesh generation. However, there is a lack of surveys focusing on IMG methods covering recent works. In this paper, we are committed to a systematic and comprehensive survey describing the contemporary IMG landscape. Focusing on 110 preliminary IMG methods, we conducted an in-depth analysis and evaluation from multiple perspectives, including the core technique and application scope of the algorithm, agent learning goals, data types, targeting challenges, advantages and limitations. With the aim of literature collection and classification based on content extraction, we propose three different taxonomies from three views of key technique, output mesh unit element, and applicable input data types. Finally, we highlight some promising future research directions and challenges in IMG. To maximize the convenience of readers, a project page of IMG is provided at \url{https://github.com/xzb030/IMG_Survey}.
translated by 谷歌翻译
Computer graphics, 3D computer vision and robotics communities have produced multiple approaches to represent and generate 3D shapes, as well as a vast number of use cases. However, single-view reconstruction remains a challenging topic that can unlock various interesting use cases such as interactive design. In this work, we propose a novel framework that leverages the intermediate latent spaces of Vision Transformer (ViT) and a joint image-text representational model, CLIP, for fast and efficient Single View Reconstruction (SVR). More specifically, we propose a novel mapping network architecture that learns a mapping between deep features extracted from ViT and CLIP, and the latent space of a base 3D generative model. Unlike previous work, our method enables view-agnostic reconstruction of 3D shapes, even in the presence of large occlusions. We use the ShapeNetV2 dataset and perform extensive experiments with comparisons to SOTA methods to demonstrate our method's effectiveness.
translated by 谷歌翻译
We advocate the use of implicit fields for learning generative models of shapes and introduce an implicit field decoder, called IM-NET, for shape generation, aimed at improving the visual quality of the generated shapes. An implicit field assigns a value to each point in 3D space, so that a shape can be extracted as an iso-surface. IM-NET is trained to perform this assignment by means of a binary classifier. Specifically, it takes a point coordinate, along with a feature vector encoding a shape, and outputs a value which indicates whether the point is outside the shape or not. By replacing conventional decoders by our implicit decoder for representation learning (via IM-AE) and shape generation (via IM-GAN), we demonstrate superior results for tasks such as generative shape modeling, interpolation, and single-view 3D reconstruction, particularly in terms of visual quality. Code and supplementary material are available at https://github.com/czq142857/implicit-decoder.
translated by 谷歌翻译
神经表示是表示形状的流行,因为它们可以学习形式传感器数据,并用于数据清理,模型完成,形状编辑和形状合成。当前的神经表示形式可以归类为对单个对象实例的过度拟合或表示对象集合。但是,都不允许对神经场景表示的准确编辑:一方面,过度拟合对象实现高度准确的重建的方法,但不能推广到看不见的对象配置,因此无法支持编辑;另一方面,代表具有变化的对象家族的方法确实概括了,但仅产生近似重建。我们建议Neuform使用最适合每个形状区域的一个:可靠数据的过拟合表示,以及可靠的可用数据以及其他任何地方的可推广表示形式,以适应过度拟合和可推广表示的优势。我们通过精心设计的体系结构和一种将两个表示网络权重融合在一起的方法,避免接缝和其他工件。我们展示了成功重新配置人类设计的形状的部分,例如椅子,表和灯,同时保留语义完整性和过度拟合形状表示的准确性。我们与两个最先进的竞争对手进行了比较,并在合理性和结果编辑的忠诚度方面取得了明显的改善。
translated by 谷歌翻译
There is no settled universal 3D representation for geometry with many alternatives such as point clouds, meshes, implicit functions, and voxels to name a few. In this work, we present a new, compelling alternative for representing shapes using a sequence of cross-sectional closed loops. The loops across all planes form an organizational hierarchy which we leverage for autoregressive shape synthesis and editing. Loops are a non-local description of the underlying shape, as simple loop manipulations (such as shifts) result in significant structural changes to the geometry. This is in contrast to manipulating local primitives such as points in a point cloud or a triangle in a triangle mesh. We further demonstrate that loops are intuitive and natural primitive for analyzing and editing shapes, both computationally and for users.
translated by 谷歌翻译
Point clouds are characterized by irregularity and unstructuredness, which pose challenges in efficient data exploitation and discriminative feature extraction. In this paper, we present an unsupervised deep neural architecture called Flattening-Net to represent irregular 3D point clouds of arbitrary geometry and topology as a completely regular 2D point geometry image (PGI) structure, in which coordinates of spatial points are captured in colors of image pixels. \mr{Intuitively, Flattening-Net implicitly approximates a locally smooth 3D-to-2D surface flattening process while effectively preserving neighborhood consistency.} \mr{As a generic representation modality, PGI inherently encodes the intrinsic property of the underlying manifold structure and facilitates surface-style point feature aggregation.} To demonstrate its potential, we construct a unified learning framework directly operating on PGIs to achieve \mr{diverse types of high-level and low-level} downstream applications driven by specific task networks, including classification, segmentation, reconstruction, and upsampling. Extensive experiments demonstrate that our methods perform favorably against the current state-of-the-art competitors. We will make the code and data publicly available at https://github.com/keeganhk/Flattening-Net.
translated by 谷歌翻译
隐式神经网络已成功用于点云的表面重建。然而,它们中的许多人面临着可扩展性问题,因为它们将整个对象或场景的异构面功能编码为单个潜在载体。为了克服这种限制,一些方法在粗略普通的3D网格或3D补丁上推断潜伏向量,并将它们插入以应对占用查询。在这样做时,它们可以与对象表面上采样的输入点进行直接连接,并且它们在空间中均匀地附加信息,而不是其最重要的信息,即在表面附近。此外,依赖于固定的补丁大小可能需要离散化调整。要解决这些问题,我们建议使用点云卷积并计算每个输入点的潜伏向量。然后,我们使用推断的权重在最近的邻居上执行基于学习的插值。对象和场景数据集的实验表明,我们的方法在大多数古典指标上显着优于其他方法,产生更精细的细节和更好的重建更薄的卷。代码可在https://github.com/valeoai/poco获得。
translated by 谷歌翻译
机器学习的最近进步已经创造了利用一类基于坐标的神经网络来解决视觉计算问题的兴趣,该基于坐标的神经网络在空间和时间跨空间和时间的场景或对象的物理属性。我们称之为神经领域的这些方法已经看到在3D形状和图像的合成中成功应用,人体的动画,3D重建和姿势估计。然而,由于在短时间内的快速进展,许多论文存在,但尚未出现全面的审查和制定问题。在本报告中,我们通过提供上下文,数学接地和对神经领域的文学进行广泛综述来解决这一限制。本报告涉及两种维度的研究。在第一部分中,我们通过识别神经字段方法的公共组件,包括不同的表示,架构,前向映射和泛化方法来专注于神经字段的技术。在第二部分中,我们专注于神经领域的应用在视觉计算中的不同问题,超越(例如,机器人,音频)。我们的评论显示了历史上和当前化身的视觉计算中已覆盖的主题的广度,展示了神经字段方法所带来的提高的质量,灵活性和能力。最后,我们展示了一个伴随着贡献本综述的生活版本,可以由社区不断更新。
translated by 谷歌翻译
我们为3D形状生成(称为SDF-Stylegan)提供了一种基于stylegan2的深度学习方法,目的是降低生成形状和形状集合之间的视觉和几何差异。我们将stylegan2扩展到3D世代,并利用隐式签名的距离函数(SDF)作为3D形状表示,并引入了两个新颖的全球和局部形状鉴别器,它们区分了真实和假的SDF值和梯度,以显着提高形状的几何形状和视觉质量。我们进一步补充了基于阴影图像的FR \'Echet Inception距离(FID)分数的3D生成模型的评估指标,以更好地评估生成形状的视觉质量和形状分布。对形状生成的实验证明了SDF-Stylegan比最先进的表现出色。我们进一步证明了基于GAN倒置的各种任务中SDF-Stylegan的功效,包括形状重建,部分点云的形状完成,基于单图像的形状形状生成以及形状样式编辑。广泛的消融研究证明了我们框架设计的功效。我们的代码和训练有素的模型可在https://github.com/zhengxinyang/sdf-stylegan上找到。
translated by 谷歌翻译
从单视图重建3D形状是一个长期的研究问题。在本文中,我们展示了深度隐式地面网络,其可以通过预测底层符号距离场来从2D图像产生高质量的细节的3D网格。除了利用全局图像特征之外,禁止2D图像上的每个3D点的投影位置,并从图像特征映射中提取本地特征。结合全球和局部特征显着提高了符合距离场预测的准确性,特别是对于富含细节的区域。据我们所知,伪装是一种不断捕获从单视图图像中存在于3D形状中存在的孔和薄结构等细节的方法。 Disn在从合成和真实图像重建的各种形状类别上实现最先进的单视性重建性能。代码可在https://github.com/xharlie/disn提供补充可以在https://xharlie.github.io/images/neUrips_2019_Supp.pdf中找到补充
translated by 谷歌翻译