在本文中,我们介绍了复杂的功能映射,它将功能映射框架扩展到表面上切线矢量字段之间的共形图。这些地图的一个关键属性是他们的方向意识。更具体地说,我们证明,与连锁两个歧管的功能空间的常规功能映射不同,我们的复杂功能图在面向的切片束之间建立了一个链路,从而允许切线矢量场的稳健和有效地传输。通过首先赋予和利用复杂的结构利用各个形状的切线束,所得到的操作变得自然导向,从而有利于横跨形状保持对应的取向和角度,而不依赖于描述符或额外的正则化。最后,也许更重要的是,我们演示了这些对象如何在功能映射框架内启动几个实际应用。我们表明功能映射及其复杂的对应物可以共同估算,以促进定向保存,规范的管道,前面遭受取向反转对称误差的误差。
translated by 谷歌翻译
我们提出了一种针对非等级地标的非刚性形状匹配的原则方法。我们的方法基于功能地图框架,但我们没有促进异构体,而是集中在近乎符号的地图上,这些图可准确地保留地标。首先,我们通过使用固有的Dirichlet-Steklov本本特征来引入新颖的地标适应性基础来实现这一目标。其次,我们建立了在此基础上表达的保形图的功能分解。最后,我们制定了一种构成形式不变的能量,该能量促进了高质量的具有里程碑式的保留地图,并展示了如何通过我们扩展到设置的最近提出的Zoomout方法的变体来求解它。我们的方法是无描述符,有效且可靠的,可显着网格变异性。我们在一系列基准数据集上评估了我们的方法,并在非等法基准测试和等距范围内的最新性能上展示了最先进的性能。
translated by 谷歌翻译
基于简单的扩散层对空间通信非常有效的洞察力,我们对3D表面进行深度学习的新的通用方法。由此产生的网络是自动稳健的,以改变表面的分辨率和样品 - 一种对实际应用至关重要的基本属性。我们的网络可以在各种几何表示上离散化,例如三角网格或点云,甚至可以在一个表示上培训然后应用于另一个表示。我们优化扩散的空间支持,作为连续网络参数,从纯粹的本地到完全全球范围,从而消除手动选择邻域大小的负担。该方法中唯一的其他成分是在每个点处独立地施加的多层的Perceptron,以及用于支持方向滤波器的空间梯度特征。由此产生的网络简单,坚固,高效。这里,我们主要专注于三角网格表面,并且展示了各种任务的最先进的结果,包括表面分类,分割和非刚性对应。
translated by 谷歌翻译
本文介绍了一组数字方法,用于在不变(弹性)二阶Sobolev指标的设置中对3D表面进行Riemannian形状分析。更具体地说,我们解决了代表为3D网格的参数化或未参数浸入式表面之间的测量学和地球距离的计算。在此基础上,我们为表面集的统计形状分析开发了工具,包括用于估算Karcher均值并在形状群体上执行切线PCA的方法,以及计算沿表面路径的平行传输。我们提出的方法从根本上依赖于通过使用Varifold Fidelity术语来为地球匹配问题提供轻松的变异配方,这使我们能够在计算未参数化表面之间的地理位置时强制执行重新训练的独立性,同时还可以使我们能够与多用途算法相比,使我们能够将表面与vare表面进行比较。采样或网状结构。重要的是,我们演示了如何扩展放松的变分框架以解决部分观察到的数据。在合成和真实的各种示例中,说明了我们的数值管道的不同好处。
translated by 谷歌翻译
几何数据的高效和实际表示是几何处理中的几种应用的普遍存在问题。广泛使用的选择是通过它们的光谱嵌入对3D对象进行编码,与每个表面点相关联通过差分操作员的特征函数的截断子集在该点处假定的值(通常是拉普拉斯人)。几次尝试为不同应用程序定义新的,优选的嵌入物在过去十年中看到了光明。尽管有限制,但标准拉普利亚特征障碍仍然在可用解决方案的顶部保持稳定,例如限于近体形状匹配的近等待物。最近,一个新的趋势表明了学习Laplacian特征障碍的替代品的优势。与此同时,许多研究问题仍未解决:新的基础比LBO特征功能更好,以及它们如何与他们联系?它们如何在功能形式的角度下采取行动?以及如何与其他功能和描述符在新配置中利用这些基础?在这项研究中,我们正确地提出了这些问题,以改善我们对这种新兴的研究方向的理解。我们在不同的背景下展示了他们的应用相关性,揭示了他们的一些见解和令人兴奋的未来方向。
translated by 谷歌翻译
Many scientific fields study data with an underlying structure that is a non-Euclidean space. Some examples include social networks in computational social sciences, sensor networks in communications, functional networks in brain imaging, regulatory networks in genetics, and meshed surfaces in computer graphics. In many applications, such geometric data are large and complex (in the case of social networks, on the scale of billions), and are natural targets for machine learning techniques. In particular, we would like to use deep neural networks, which have recently proven to be powerful tools for a broad range of problems from computer vision, natural language processing, and audio analysis. However, these tools have been most successful on data with an underlying Euclidean or grid-like structure, and in cases where the invariances of these structures are built into networks used to model them.Geometric deep learning is an umbrella term for emerging techniques attempting to generalize (structured) deep neural models to non-Euclidean domains such as graphs and manifolds. The purpose of this paper is to overview different examples of geometric deep learning problems and present available solutions, key difficulties, applications, and future research directions in this nascent field.
translated by 谷歌翻译
定义网格上卷积的常用方法是将它们作为图形解释并应用图形卷积网络(GCN)。这种GCNS利用各向同性核,因此对顶点的相对取向不敏感,从而对整个网格的几何形状。我们提出了规范的等分性网状CNN,它概括了GCNS施加各向异性仪表等级核。由于产生的特征携带方向信息,我们引入了通过网格边缘并行传输特征来定义的几何消息传递方案。我们的实验验证了常规GCN和其他方法的提出模型的显着提高的表达性。
translated by 谷歌翻译
动态MRI可以捕获具有高对比度的软组织器官中的时间解剖变化,但是获得的序列通常遭受有限的体积覆盖,这使得器官形状轨迹的高分辨率重建在时间研究中的主要挑战。由于腹部器官形状的变异性跨越时间和受试者,本研究的目的是朝向3D致密速度测量来完全覆盖整个表面并提取有意义的特征,其特征在于观察到的器官变形并实现临床作用或决定。我们在深呼吸运动期间提出了一种用于表征膀胱表面动力学的管道。对于紧凑的形状表示,首先使用重建的时间体积来使用LDDMM框架建立专用的动态4D网状序列。然后,我们从诸如网格伸长和失真的机械参数执行器官动力学的统计表征。由于我们将器官引用作为非平面,因此我们还使用平均曲率变化为度量来量化表面演变。然而,曲率的数值计算强烈地取决于表面参数化。为了应对这一依赖性,我们采用了一种用于表面变形分析的新方法。独立于参数化并最小化测地曲线的长度,通过最小化Dirichlet能量,它使表面曲线平滑地朝向球体。 eulerian PDE方法用于从曲线缩短流中导出形状描述符。使用Laplace Beltrami操作员特征函数来计算各个运动模式之间的接口,用于球形映射。用于提取用于局部控制的模拟形状轨迹的表征相关曲线的应用演示了所提出的形状描述符的稳定性。
translated by 谷歌翻译
我们介绍了CheBlieset,一种对(各向异性)歧管的组成的方法。对基于GRAP和基于组的神经网络的成功进行冲浪,我们利用了几何深度学习领域的最新发展,以推导出一种新的方法来利用数据中的任何各向异性。通过离散映射的谎言组,我们开发由各向异性卷积层(Chebyshev卷积),空间汇集和解凝层制成的图形神经网络,以及全球汇集层。集团的标准因素是通过具有各向异性左不变性的黎曼距离的图形上的等级和不变的运算符来实现的。由于其简单的形式,Riemannian公制可以在空间和方向域中模拟任何各向异性。这种对Riemannian度量的各向异性的控制允许平衡图形卷积层的不变性(各向异性度量)的平衡(各向异性指标)。因此,我们打开大门以更好地了解各向异性特性。此外,我们经验证明了在CIFAR10上的各向异性参数的存在(数据依赖性)甜点。这一关键的结果是通过利用数据中的各向异性属性来获得福利的证据。我们还评估了在STL10(图像数据)和ClimateNet(球面数据)上的这种方法的可扩展性,显示了对不同任务的显着适应性。
translated by 谷歌翻译
非刚性可拉伸结构之间的一致性是计算机视觉中最具挑战性的任务之一,因为不变属性很难定义,并且没有针对真实数据集的标记数据。我们基于规模不变几何形状的光谱域提出了无监督的神经网络体系结构。我们在功能地图体系结构的基础上构建,但是表明,一旦等轴测假设破裂,学习本地功能,直到现在,就还不够。我们证明了使用多个量表不变的几何形状来解决此问题。我们的方法是局部规模变形的不可知论,与现有的光谱最新溶液相比,来自不同域的匹配形状的性能出色。
translated by 谷歌翻译
尽管在非刚性3D形状匹配中的深函数映射成功,但不存在于同时模拟自称和形状匹配的学习框架。尽管对对称性不匹配导致的错误是非刚性形状匹配的主要挑战。在本文中,我们提出了一种新颖的框架,该框架同时学习自我对称以及一对形状之间的成对地图。我们的关键思想是通过正则化术语耦合自我对称地图和一对映射,从而为其两者提供联合约束,从而导致更准确的映射。我们在几个基准上验证了我们的方法,在那里它在两个任务中表达了许多竞争基础的基准。
translated by 谷歌翻译
我们通过同步在点云上定义的学习函数的地图同步地图来共同寄存多种非刚性形状的新方法。尽管处理非刚性形状的能力在从计算机动画到3D数字化的各种应用中都是至关重要的,但文献仍然缺乏围绕闭塞观察到的真实,嘈杂的扫描的集合的稳健和灵活的框架。给定一组这样的点云,我们的方法首先计算通过功能映射参数化的成对对应关系。我们同时学习潜在的非正交基础函数,以有效地规范变形,同时以优雅的方式处理闭塞。为了最大限度地受益于推断成对变形字段提供的多向信息,我们通过我们的新颖和原则优化配方将成对功能映射与周期一致的整体同步。我们通过广泛的实验证明了我们的方法在注册准确性中实现了最先进的性能,同时可以灵活,高效,因为我们在统一框架中处理非刚性和多体案例并避免昂贵的优化优化通过使用基函数映射的置换。
translated by 谷歌翻译
功能图是形状对应关系的有效表示,它提供了在形状对之间的实际函数的匹配。功能映射可以被建模为Lie Group $ So(n)$的元素为近等距形状。随后可以采用同步来强制在一组形状上计算的功能映射之间强制循环一致性,从而提高各个映射的准确性。有兴趣开发尊重$ SO(n)$的几何结构的同步方法,同时引入概率框架来量化与同步结果相关的不确定性。本文介绍了$ SO(n)$的贝叶斯概率推理框架,因为函数贴图的riemannian同步,通过同步执行功能贴图的最大-a-postiori估计,并进一步部署了riemannian马尔可夫链蒙特卡罗采样器以进行不确定性量化。我们的实验表明,限制了riemannian歧管$ SO(n)$的同步,从而提高了功能地图的估计,而我们的riemannian MCMC采样器提供了第一次不确定性量化结果。
translated by 谷歌翻译
In this work we study statistical properties of graph-based algorithms for multi-manifold clustering (MMC). In MMC the goal is to retrieve the multi-manifold structure underlying a given Euclidean data set when this one is assumed to be obtained by sampling a distribution on a union of manifolds $\mathcal{M} = \mathcal{M}_1 \cup\dots \cup \mathcal{M}_N$ that may intersect with each other and that may have different dimensions. We investigate sufficient conditions that similarity graphs on data sets must satisfy in order for their corresponding graph Laplacians to capture the right geometric information to solve the MMC problem. Precisely, we provide high probability error bounds for the spectral approximation of a tensorized Laplacian on $\mathcal{M}$ with a suitable graph Laplacian built from the observations; the recovered tensorized Laplacian contains all geometric information of all the individual underlying manifolds. We provide an example of a family of similarity graphs, which we call annular proximity graphs with angle constraints, satisfying these sufficient conditions. We contrast our family of graphs with other constructions in the literature based on the alignment of tangent planes. Extensive numerical experiments expand the insights that our theory provides on the MMC problem.
translated by 谷歌翻译
Estimating the pose of an object from a monocular image is an inverse problem fundamental in computer vision. The ill-posed nature of this problem requires incorporating deformation priors to solve it. In practice, many materials do not perceptibly shrink or extend when manipulated, constituting a powerful and well-known prior. Mathematically, this translates to the preservation of the Riemannian metric. Neural networks offer the perfect playground to solve the surface reconstruction problem as they can approximate surfaces with arbitrary precision and allow the computation of differential geometry quantities. This paper presents an approach to inferring continuous deformable surfaces from a sequence of images, which is benchmarked against several techniques and obtains state-of-the-art performance without the need for offline training.
translated by 谷歌翻译
神经网络的经典发展主要集中在有限维欧基德空间或有限组之间的学习映射。我们提出了神经网络的概括,以学习映射无限尺寸函数空间之间的运算符。我们通过一类线性积分运算符和非线性激活函数的组成制定运营商的近似,使得组合的操作员可以近似复杂的非线性运算符。我们证明了我们建筑的普遍近似定理。此外,我们介绍了四类运算符参数化:基于图形的运算符,低秩运算符,基于多极图形的运算符和傅里叶运算符,并描述了每个用于用每个计算的高效算法。所提出的神经运营商是决议不变的:它们在底层函数空间的不同离散化之间共享相同的网络参数,并且可以用于零击超分辨率。在数值上,与现有的基于机器学习的方法,达西流程和Navier-Stokes方程相比,所提出的模型显示出卓越的性能,而与传统的PDE求解器相比,与现有的基于机器学习的方法有关的基于机器学习的方法。
translated by 谷歌翻译
We propose a novel method for constructing wavelet transforms of functions defined on the vertices of an arbitrary finite weighted graph. Our approach is based on defining scaling using the the graph analogue of the Fourier domain, namely the spectral decomposition of the discrete graph Laplacian L. Given a wavelet generating kernel g and a scale parameter t, we define the scaled wavelet operator T t g = g(tL). The spectral graph wavelets are then formed by localizing this operator by applying it to an indicator function. Subject to an admissibility condition on g, this procedure defines an invertible transform. We explore the localization properties of the wavelets in the limit of fine scales. Additionally, we present a fast Chebyshev polynomial approximation algorithm for computing the transform that avoids the need for diagonalizing L. We highlight potential applications of the transform through examples of wavelets on graphs corresponding to a variety of different problem domains.
translated by 谷歌翻译
在众多计算机视觉应用中,评估非刚性形状的相似性是一项基本任务。在这里,我们提出了一种新型的公理方法,以匹配跨形状的相似区域。匹配相似区域被配制为与Laplace-Beltrami操作员(LBO)密切相关的操作员的对齐。所提出方法的主要新颖性是考虑具有多个指标的多种歧管上定义的差分运算符。指标的选择与基本形状属性有关,同时考虑不同指标下的同一歧管,可以将其视为从不同角度分析了基本歧管。具体而言,我们检查了标准不变的度量和相应的尺度不变的拉普拉斯 - 贝特拉米操作员(Si-LBO)以及常规度量和常规LBO。我们证明,规模不变的度量强调了铰接形状中重要语义特征的位置。因此,Si-LBO的截断光谱更好地捕获了局部弯曲的区域,并补充了常规LBO截断光谱中封装的全局信息。我们表明,在标准基准测试时,将这些双光谱匹配的公理框架优于竞争的公理框架。我们介绍了一个新的数据集,并将所提出的方法与跨数据库配置中的基于最先进的学习方法进行了比较。具体而言,我们表明,在对一个数据集进行培训并在另一个数据集上进行测试时,提出的不涉及培训的公理方法优于深度学习替代方案。
translated by 谷歌翻译
我们引入了一个神经隐式框架,该框架利用神经网络的可区分特性和点采样表面的离散几何形状,以将它们作为神经隐含函数的级别集近似。为了训练神经隐式函数,我们提出了近似签名距离函数的损失功能,并允许具有高阶导数的术语,例如曲率的主要方向之间的对齐方式,以了解更多几何细节。在训练过程中,我们考虑了基于点采样表面的曲率的不均匀采样策略,以优先考虑点更多的几何细节。与以前的方法相比,这种抽样意味着在保持几何准确性的同时更快地学习。我们还介绍了神经表面(例如正常矢量和曲率)的分析差异几何公式。
translated by 谷歌翻译
在这项工作中,我们提出了一个新颖的基于学习的框架,该框架将对比度学习的局部准确性与几何方法的全球一致性结合在一起,以实现强大的非刚性匹配。我们首先观察到,尽管对比度学习可以导致强大的点特征,但由于标准对比度损失的纯粹组合性质,学到的对应关系通常缺乏平滑度和一致性。为了克服这一局限性,我们建议通过两种类型的平滑度正则化来提高对比性学习,从而将几何信息注入对应学习。借助这种新颖的组合,所得的特征既具有跨个别点的高度歧视性,又可以通过简单的接近查询导致坚固且一致的对应关系。我们的框架是一般的,适用于3D和2D域中的本地功能学习。我们通过在各种挑战性的匹配基准上进行广泛的实验来证明我们的方法的优势,包括3D非刚性形状对应关系和2D图像关键点匹配。
translated by 谷歌翻译