在众多计算机视觉应用中,评估非刚性形状的相似性是一项基本任务。在这里,我们提出了一种新型的公理方法,以匹配跨形状的相似区域。匹配相似区域被配制为与Laplace-Beltrami操作员(LBO)密切相关的操作员的对齐。所提出方法的主要新颖性是考虑具有多个指标的多种歧管上定义的差分运算符。指标的选择与基本形状属性有关,同时考虑不同指标下的同一歧管,可以将其视为从不同角度分析了基本歧管。具体而言,我们检查了标准不变的度量和相应的尺度不变的拉普拉斯 - 贝特拉米操作员(Si-LBO)以及常规度量和常规LBO。我们证明,规模不变的度量强调了铰接形状中重要语义特征的位置。因此,Si-LBO的截断光谱更好地捕获了局部弯曲的区域,并补充了常规LBO截断光谱中封装的全局信息。我们表明,在标准基准测试时,将这些双光谱匹配的公理框架优于竞争的公理框架。我们介绍了一个新的数据集,并将所提出的方法与跨数据库配置中的基于最先进的学习方法进行了比较。具体而言,我们表明,在对一个数据集进行培训并在另一个数据集上进行测试时,提出的不涉及培训的公理方法优于深度学习替代方案。
translated by 谷歌翻译
非刚性可拉伸结构之间的一致性是计算机视觉中最具挑战性的任务之一,因为不变属性很难定义,并且没有针对真实数据集的标记数据。我们基于规模不变几何形状的光谱域提出了无监督的神经网络体系结构。我们在功能地图体系结构的基础上构建,但是表明,一旦等轴测假设破裂,学习本地功能,直到现在,就还不够。我们证明了使用多个量表不变的几何形状来解决此问题。我们的方法是局部规模变形的不可知论,与现有的光谱最新溶液相比,来自不同域的匹配形状的性能出色。
translated by 谷歌翻译
Many scientific fields study data with an underlying structure that is a non-Euclidean space. Some examples include social networks in computational social sciences, sensor networks in communications, functional networks in brain imaging, regulatory networks in genetics, and meshed surfaces in computer graphics. In many applications, such geometric data are large and complex (in the case of social networks, on the scale of billions), and are natural targets for machine learning techniques. In particular, we would like to use deep neural networks, which have recently proven to be powerful tools for a broad range of problems from computer vision, natural language processing, and audio analysis. However, these tools have been most successful on data with an underlying Euclidean or grid-like structure, and in cases where the invariances of these structures are built into networks used to model them.Geometric deep learning is an umbrella term for emerging techniques attempting to generalize (structured) deep neural models to non-Euclidean domains such as graphs and manifolds. The purpose of this paper is to overview different examples of geometric deep learning problems and present available solutions, key difficulties, applications, and future research directions in this nascent field.
translated by 谷歌翻译
本文介绍了一组数字方法,用于在不变(弹性)二阶Sobolev指标的设置中对3D表面进行Riemannian形状分析。更具体地说,我们解决了代表为3D网格的参数化或未参数浸入式表面之间的测量学和地球距离的计算。在此基础上,我们为表面集的统计形状分析开发了工具,包括用于估算Karcher均值并在形状群体上执行切线PCA的方法,以及计算沿表面路径的平行传输。我们提出的方法从根本上依赖于通过使用Varifold Fidelity术语来为地球匹配问题提供轻松的变异配方,这使我们能够在计算未参数化表面之间的地理位置时强制执行重新训练的独立性,同时还可以使我们能够与多用途算法相比,使我们能够将表面与vare表面进行比较。采样或网状结构。重要的是,我们演示了如何扩展放松的变分框架以解决部分观察到的数据。在合成和真实的各种示例中,说明了我们的数值管道的不同好处。
translated by 谷歌翻译
我们提出了一种针对非等级地标的非刚性形状匹配的原则方法。我们的方法基于功能地图框架,但我们没有促进异构体,而是集中在近乎符号的地图上,这些图可准确地保留地标。首先,我们通过使用固有的Dirichlet-Steklov本本特征来引入新颖的地标适应性基础来实现这一目标。其次,我们建立了在此基础上表达的保形图的功能分解。最后,我们制定了一种构成形式不变的能量,该能量促进了高质量的具有里程碑式的保留地图,并展示了如何通过我们扩展到设置的最近提出的Zoomout方法的变体来求解它。我们的方法是无描述符,有效且可靠的,可显着网格变异性。我们在一系列基准数据集上评估了我们的方法,并在非等法基准测试和等距范围内的最新性能上展示了最先进的性能。
translated by 谷歌翻译
在本文中,我们介绍了复杂的功能映射,它将功能映射框架扩展到表面上切线矢量字段之间的共形图。这些地图的一个关键属性是他们的方向意识。更具体地说,我们证明,与连锁两个歧管的功能空间的常规功能映射不同,我们的复杂功能图在面向的切片束之间建立了一个链路,从而允许切线矢量场的稳健和有效地传输。通过首先赋予和利用复杂的结构利用各个形状的切线束,所得到的操作变得自然导向,从而有利于横跨形状保持对应的取向和角度,而不依赖于描述符或额外的正则化。最后,也许更重要的是,我们演示了这些对象如何在功能映射框架内启动几个实际应用。我们表明功能映射及其复杂的对应物可以共同估算,以促进定向保存,规范的管道,前面遭受取向反转对称误差的误差。
translated by 谷歌翻译
Spectral geometric methods have brought revolutionary changes to the field of geometry processing. Of particular interest is the study of the Laplacian spectrum as a compact, isometry and permutation-invariant representation of a shape. Some recent works show how the intrinsic geometry of a full shape can be recovered from its spectrum, but there are approaches that consider the more challenging problem of recovering the geometry from the spectral information of partial shapes. In this paper, we propose a possible way to fill this gap. We introduce a learning-based method to estimate the Laplacian spectrum of the union of partial non-rigid 3D shapes, without actually computing the 3D geometry of the union or any correspondence between those partial shapes. We do so by operating purely in the spectral domain and by defining the union operation between short sequences of eigenvalues. We show that the approximated union spectrum can be used as-is to reconstruct the complete geometry [MRC*19], perform region localization on a template [RTO*19] and retrieve shapes from a database, generalizing ShapeDNA [RWP06] to work with partialities. Working with eigenvalues allows us to deal with unknown correspondence, different sampling, and different discretizations (point clouds and meshes alike), making this operation especially robust and general. Our approach is data-driven and can generalize to isometric and non-isometric deformations of the surface, as long as these stay within the same semantic class (e.g., human bodies or horses), as well as to partiality artifacts not seen at training time.
translated by 谷歌翻译
Deep learning has achieved a remarkable performance breakthrough in several fields, most notably in speech recognition, natural language processing, and computer vision. In particular, convolutional neural network (CNN) architectures currently produce state-of-the-art performance on a variety of image analysis tasks such as object detection and recognition. Most of deep learning research has so far focused on dealing with 1D, 2D, or 3D Euclideanstructured data such as acoustic signals, images, or videos. Recently, there has been an increasing interest in geometric deep learning, attempting to generalize deep learning methods to non-Euclidean structured data such as graphs and manifolds, with a variety of applications from the domains of network analysis, computational social science, or computer graphics. In this paper, we propose a unified framework allowing to generalize CNN architectures to non-Euclidean domains (graphs and manifolds) and learn local, stationary, and compositional task-specific features. We show that various non-Euclidean CNN methods previously proposed in the literature can be considered as particular instances of our framework. We test the proposed method on standard tasks from the realms of image-, graphand 3D shape analysis and show that it consistently outperforms previous approaches.
translated by 谷歌翻译
几何数据的高效和实际表示是几何处理中的几种应用的普遍存在问题。广泛使用的选择是通过它们的光谱嵌入对3D对象进行编码,与每个表面点相关联通过差分操作员的特征函数的截断子集在该点处假定的值(通常是拉普拉斯人)。几次尝试为不同应用程序定义新的,优选的嵌入物在过去十年中看到了光明。尽管有限制,但标准拉普利亚特征障碍仍然在可用解决方案的顶部保持稳定,例如限于近体形状匹配的近等待物。最近,一个新的趋势表明了学习Laplacian特征障碍的替代品的优势。与此同时,许多研究问题仍未解决:新的基础比LBO特征功能更好,以及它们如何与他们联系?它们如何在功能形式的角度下采取行动?以及如何与其他功能和描述符在新配置中利用这些基础?在这项研究中,我们正确地提出了这些问题,以改善我们对这种新兴的研究方向的理解。我们在不同的背景下展示了他们的应用相关性,揭示了他们的一些见解和令人兴奋的未来方向。
translated by 谷歌翻译
动态MRI可以捕获具有高对比度的软组织器官中的时间解剖变化,但是获得的序列通常遭受有限的体积覆盖,这使得器官形状轨迹的高分辨率重建在时间研究中的主要挑战。由于腹部器官形状的变异性跨越时间和受试者,本研究的目的是朝向3D致密速度测量来完全覆盖整个表面并提取有意义的特征,其特征在于观察到的器官变形并实现临床作用或决定。我们在深呼吸运动期间提出了一种用于表征膀胱表面动力学的管道。对于紧凑的形状表示,首先使用重建的时间体积来使用LDDMM框架建立专用的动态4D网状序列。然后,我们从诸如网格伸长和失真的机械参数执行器官动力学的统计表征。由于我们将器官引用作为非平面,因此我们还使用平均曲率变化为度量来量化表面演变。然而,曲率的数值计算强烈地取决于表面参数化。为了应对这一依赖性,我们采用了一种用于表面变形分析的新方法。独立于参数化并最小化测地曲线的长度,通过最小化Dirichlet能量,它使表面曲线平滑地朝向球体。 eulerian PDE方法用于从曲线缩短流中导出形状描述符。使用Laplace Beltrami操作员特征函数来计算各个运动模式之间的接口,用于球形映射。用于提取用于局部控制的模拟形状轨迹的表征相关曲线的应用演示了所提出的形状描述符的稳定性。
translated by 谷歌翻译
许多天然形状的大部分特征特征集中在太空中的几个地区。例如,人类和动物具有独特的头形,而椅子和飞机等无机物体则由具有特定几何特征的良好定位功能部件制成。通常,这些特征是密切相关的 - 四足动物中面部特征的修改应引起身体结构的变化。但是,在形状建模应用中,这些类型的编辑是最难的编辑。他们需要高精度,但也需要全球对整个形状的认识。即使在深度学习时代,获得满足此类要求的可操作表征也是一个开放的问题,构成了重大限制。在这项工作中,我们通过将数据驱动的模型定义为线性操作员(网状拉普拉斯的变体)来解决此问题,该模型的光谱捕获了手头形状的全局和局部几何特性。对这些光谱的修改被转化为相应表面的语义有效变形。通过明确将全局与本地表面特征分离,我们的管道允许执行本地编辑,同时保持全局风格的连贯性。我们凭经验证明了我们的基于学习的模型如何推广以塑造在培训时间看不到的表示,并且我们系统地分析了本地运营商在各种形状类别上的不同选择。
translated by 谷歌翻译
功能图是形状对应关系的有效表示,它提供了在形状对之间的实际函数的匹配。功能映射可以被建模为Lie Group $ So(n)$的元素为近等距形状。随后可以采用同步来强制在一组形状上计算的功能映射之间强制循环一致性,从而提高各个映射的准确性。有兴趣开发尊重$ SO(n)$的几何结构的同步方法,同时引入概率框架来量化与同步结果相关的不确定性。本文介绍了$ SO(n)$的贝叶斯概率推理框架,因为函数贴图的riemannian同步,通过同步执行功能贴图的最大-a-postiori估计,并进一步部署了riemannian马尔可夫链蒙特卡罗采样器以进行不确定性量化。我们的实验表明,限制了riemannian歧管$ SO(n)$的同步,从而提高了功能地图的估计,而我们的riemannian MCMC采样器提供了第一次不确定性量化结果。
translated by 谷歌翻译
This paper studies 3D dense shape correspondence, a key shape analysis application in computer vision and graphics. We introduce a novel hybrid geometric deep learning-based model that learns geometrically meaningful and discretization-independent features with a U-Net model as the primary node feature extraction module, followed by a successive spectral-based graph convolutional network. To create a diverse set of filters, we use anisotropic wavelet basis filters, being sensitive to both different directions and band-passes. This filter set overcomes the over-smoothing behavior of conventional graph neural networks. To further improve the model's performance, we add a function that perturbs the feature maps in the last layer ahead of fully connected layers, forcing the network to learn more discriminative features overall. The resulting correspondence maps show state-of-the-art performance on the benchmark datasets based on average geodesic errors and superior robustness to discretization in 3D meshes. Our approach provides new insights and practical solutions to the dense shape correspondence research.
translated by 谷歌翻译
我们介绍了一种算法,用于计算采样歧管的测量测量算法,其依赖于对采样数据的植物嵌入的曲线图的模拟。我们的方法利用经典的结果在半导体分析和量子古典对应中,并形成用于学习数据集的歧管的技术的基础,随后用于高维数据集的非线性维度降低。我们以基于CoVID-19移动数据的聚类演示,从模型歧管中采样数据采样的数据,并通过集群演示来说明新的算法。最后,我们的方法揭示了数据采样和量化提供的离散化之间有趣的连接。
translated by 谷歌翻译
从模型分析和机器学习中的比较到医疗数据集集合中的趋势发现,需要有效地比较和表示具有未知字段的数据集跨越各个字段。我们使用歧管学习来比较不同数据集的固有几何结构,通过比较其扩散操作员,对称阳性定义(SPD)矩阵,这些矩阵与连续的拉普拉斯 - 贝特拉米操作员与离散样品的近似相关。现有方法通常假设已知的数据对齐,并以点数的方式比较此类运算符。取而代之的是,我们利用SPD矩阵的Riemannian几何形状比较了这些操作员并根据log-euclidean Metric的下限定义了新的理论动机距离。我们的框架有助于比较具有不同大小,功能数量和测量方式的数据集中表达的数据歧管的比较。我们的日志 - 欧几里德签名(LES)距离恢复了有意义的结构差异,在各种应用领域的表现都优于竞争方法。
translated by 谷歌翻译
我们介绍了CheBlieset,一种对(各向异性)歧管的组成的方法。对基于GRAP和基于组的神经网络的成功进行冲浪,我们利用了几何深度学习领域的最新发展,以推导出一种新的方法来利用数据中的任何各向异性。通过离散映射的谎言组,我们开发由各向异性卷积层(Chebyshev卷积),空间汇集和解凝层制成的图形神经网络,以及全球汇集层。集团的标准因素是通过具有各向异性左不变性的黎曼距离的图形上的等级和不变的运算符来实现的。由于其简单的形式,Riemannian公制可以在空间和方向域中模拟任何各向异性。这种对Riemannian度量的各向异性的控制允许平衡图形卷积层的不变性(各向异性度量)的平衡(各向异性指标)。因此,我们打开大门以更好地了解各向异性特性。此外,我们经验证明了在CIFAR10上的各向异性参数的存在(数据依赖性)甜点。这一关键的结果是通过利用数据中的各向异性属性来获得福利的证据。我们还评估了在STL10(图像数据)和ClimateNet(球面数据)上的这种方法的可扩展性,显示了对不同任务的显着适应性。
translated by 谷歌翻译
We present G-MSM (Graph-based Multi-Shape Matching), a novel unsupervised learning approach for non-rigid shape correspondence. Rather than treating a collection of input poses as an unordered set of samples, we explicitly model the underlying shape data manifold. To this end, we propose an adaptive multi-shape matching architecture that constructs an affinity graph on a given set of training shapes in a self-supervised manner. The key idea is to combine putative, pairwise correspondences by propagating maps along shortest paths in the underlying shape graph. During training, we enforce cycle-consistency between such optimal paths and the pairwise matches which enables our model to learn topology-aware shape priors. We explore different classes of shape graphs and recover specific settings, like template-based matching (star graph) or learnable ranking/sorting (TSP graph), as special cases in our framework. Finally, we demonstrate state-of-the-art performance on several recent shape correspondence benchmarks, including real-world 3D scan meshes with topological noise and challenging inter-class pairs.
translated by 谷歌翻译
Experimental sciences have come to depend heavily on our ability to organize, interpret and analyze high-dimensional datasets produced from observations of a large number of variables governed by natural processes. Natural laws, conservation principles, and dynamical structure introduce intricate inter-dependencies among these observed variables, which in turn yield geometric structure, with fewer degrees of freedom, on the dataset. We show how fine-scale features of this structure in data can be extracted from \emph{discrete} approximations to quantum mechanical processes given by data-driven graph Laplacians and localized wavepackets. This data-driven quantization procedure leads to a novel, yet natural uncertainty principle for data analysis induced by limited data. We illustrate the new approach with algorithms and several applications to real-world data, including the learning of patterns and anomalies in social distancing and mobility behavior during the COVID-19 pandemic.
translated by 谷歌翻译
尽管在非刚性3D形状匹配中的深函数映射成功,但不存在于同时模拟自称和形状匹配的学习框架。尽管对对称性不匹配导致的错误是非刚性形状匹配的主要挑战。在本文中,我们提出了一种新颖的框架,该框架同时学习自我对称以及一对形状之间的成对地图。我们的关键思想是通过正则化术语耦合自我对称地图和一对映射,从而为其两者提供联合约束,从而导致更准确的映射。我们在几个基准上验证了我们的方法,在那里它在两个任务中表达了许多竞争基础的基准。
translated by 谷歌翻译
基于简单的扩散层对空间通信非常有效的洞察力,我们对3D表面进行深度学习的新的通用方法。由此产生的网络是自动稳健的,以改变表面的分辨率和样品 - 一种对实际应用至关重要的基本属性。我们的网络可以在各种几何表示上离散化,例如三角网格或点云,甚至可以在一个表示上培训然后应用于另一个表示。我们优化扩散的空间支持,作为连续网络参数,从纯粹的本地到完全全球范围,从而消除手动选择邻域大小的负担。该方法中唯一的其他成分是在每个点处独立地施加的多层的Perceptron,以及用于支持方向滤波器的空间梯度特征。由此产生的网络简单,坚固,高效。这里,我们主要专注于三角网格表面,并且展示了各种任务的最先进的结果,包括表面分类,分割和非刚性对应。
translated by 谷歌翻译