在联合学习(FL)中,模型性能通常遭受数据异质性引起的客户漂移,而主流工作则专注于纠正客户漂移。我们提出了一种名为Virtual同质性学习(VHL)的不同方法,以直接“纠正”数据异质性。尤其是,VHL使用一个虚拟均匀的数据集进行FL,该数据集精心制作以满足两个条件:不包含私人信息和可分开的情况。虚拟数据集可以从跨客户端共享的纯噪声中生成,旨在校准异质客户的功能。从理论上讲,我们证明VHL可以在自然分布上实现可证明的概括性能。从经验上讲,我们证明了VHL赋予FL具有巨大改善的收敛速度和概括性能。VHL是使用虚拟数据集解决数据异质性的首次尝试,为FL提供了新的有效手段。
translated by 谷歌翻译
Federated learning allows multiple clients to collaboratively train a model without exchanging their data, thus preserving data privacy. Unfortunately, it suffers significant performance degradation under heterogeneous data at clients. Common solutions in local training involve designing a specific auxiliary loss to regularize weight divergence or feature inconsistency. However, we discover that these approaches fall short of the expected performance because they ignore the existence of a vicious cycle between classifier divergence and feature mapping inconsistency across clients, such that client models are updated in inconsistent feature space with diverged classifiers. We then propose a simple yet effective framework named Federated learning with Feature Anchors (FedFA) to align the feature mappings and calibrate classifier across clients during local training, which allows client models updating in a shared feature space with consistent classifiers. We demonstrate that this modification brings similar classifiers and a virtuous cycle between feature consistency and classifier similarity across clients. Extensive experiments show that FedFA significantly outperforms the state-of-the-art federated learning algorithms on various image classification datasets under label and feature distribution skews.
translated by 谷歌翻译
联邦学习(FL)试图在本地客户端分发模型培训,而无需在集中式数据中心收集数据,从而消除了数据私人关系问题。 FL的一个主要挑战是数据异质性(每个客户的数据分布可能会有所不同),因为它可能导致本地客户的权重差异并减慢全球融合。当前专为数据异质性设计的SOTA FL方法通常会施加正则化以限制非IID数据的影响,并且是状态算法,即它们随着时间的推移维持局部统计数据。尽管有效,但这些方法只能用于FL的特殊情况,仅涉及少数可靠的客户。对于fl的更典型应用,客户端数量很大(例如,边缘设备和移动应用程序),这些方法无法应用,激发了对任何可用于任何数量客户端使用的无状态方法的无状态方法的需求。我们得出了一阶梯度正则化,以惩罚由于本地数据异质性而导致的本地更新不一致。具体而言,为了减轻权重差异,我们将全局数据分布的一阶近似引入本地目标,该目标凭直觉地惩罚了与全局更新相反方向的更新。最终结果是一种无状态的FL算法,可实现1)在非IID数据分布下,比SOTA方法明显更快地收敛(即较少的通信回合)和2)总体融合性能更高。重要的是,我们的方法不会对客户大小施加不切实际的限制,从而可以从大多数FL应用程序中向大量客户学习。
translated by 谷歌翻译
Federated learning achieves joint training of deep models by connecting decentralized data sources, which can significantly mitigate the risk of privacy leakage. However, in a more general case, the distributions of labels among clients are different, called ``label distribution skew''. Directly applying conventional federated learning without consideration of label distribution skew issue significantly hurts the performance of the global model. To this end, we propose a novel federated learning method, named FedMGD, to alleviate the performance degradation caused by the label distribution skew issue. It introduces a global Generative Adversarial Network to model the global data distribution without access to local datasets, so the global model can be trained using the global information of data distribution without privacy leakage. The experimental results demonstrate that our proposed method significantly outperforms the state-of-the-art on several public benchmarks. Code is available at \url{https://github.com/Sheng-T/FedMGD}.
translated by 谷歌翻译
传统的联邦优化方法的性能较差(即降低准确性),尤其是对于高度偏斜的数据。在本文中,我们调查了佛罗里达州的标签分布偏斜,在那里标签的分布各不相同。首先,我们从统计视图研究了标签分布偏斜。我们在理论上和经验上都证明了基于软马克斯跨凝结的先前方法不合适,这可能会导致本地模型非常适合少数群体和缺失的类别。此外,我们从理论上引入了一个偏离,以测量本地更新后梯度的偏差。最后,我们建议通过\ textbf {l} ogits \ textbf {c}启动)FedLc(\ textbf {fed {fed}学习,该学习根据每个类别的出现可能性。 FedLC通过添加成对标签的边距将细粒度校准的跨透镜损失应用于本地更新。联合数据集和现实世界数据集的广泛实验表明,联邦快递会导致更准确的全球模型和大大改善的性能。此外,将其他FL方法集成到我们的方法中可以进一步增强全球模型的性能。
translated by 谷歌翻译
联合学习(FL)是一个分散的学习范式,其中多个客户在不集中其本地数据的情况下进行培训深度学习模型,因此保留数据隐私。现实世界中的应用程序通常涉及在不同客户端的数据集上进行分发转换,这损害了客户从各自的数据分布中看不见样本的概括能力。在这项工作中,我们解决了最近提出的功能转移问题,其中客户具有不同的功能分布,而标签分布相同。我们建议联邦代表性扩大(FRAUG)来解决这个实用且具有挑战性的问题。我们的方法在嵌入空间中生成合成客户端特定的样本,以增加通常小客户端数据集。为此,我们训练一个共享的生成模型,以融合客户从其不同功能分布中学习的知识。该发电机合成了客户端 - 不合时式嵌入,然后通过表示转换网络(RTNET)将其局部转换为特定于客户端的嵌入。通过将知识转移到客户端,生成的嵌入式作为客户模型的正常化程序,并减少对本地原始数据集的过度拟合,从而改善了概括。我们对公共基准和现实医学数据集的经验评估证明了该方法的有效性,该方法在包括Partialfed和FedBN在内的非IID特征的当前最新FL方法大大优于最新的FL方法。
translated by 谷歌翻译
联合学习的目的是从多个分散设备(即客户)培训全球模型,而无需交换其私人本地数据。关键挑战是处理非i.i.d。 (独立分布的)数据,这些数据可能引起其本地功能的差异。我们介绍了超球联邦学习(球形)框架,以解决非i.i.d。通过限制学习数据点的学习表示,以在客户共享的单位超孔上。具体而言,所有客户都通过最大程度地减少固定分类器的损失来学习其本地表示,其权重跨度跨越了单位。在联合培训改善了全球模型后,通过最大程度地减少平方平方损失,通过封闭形式的解决方案进一步校准了该分类器。我们表明,可以有效地计算校准解决方案,而无需直接访问本地数据。广泛的实验表明,我们的球形方法能够通过相当大的利润率(在具有挑战性的数据集中达到6%)来提高多个现有联合学习算法的准确性,并具有增强的计算和跨数据集和模型架构的通信效率。
translated by 谷歌翻译
当客户具有不同的数据分布时,最新的联合学习方法的性能比其集中式同行差得多。对于神经网络,即使集中式SGD可以轻松找到同时执行所有客户端的解决方案,当前联合优化方法也无法收敛到可比的解决方案。我们表明,这种性能差异很大程度上可以归因于非概念性提出的优化挑战。具体来说,我们发现网络的早期层确实学习了有用的功能,但是最后一层无法使用它们。也就是说,适用于此非凸问题的联合优化扭曲了最终层的学习。利用这一观察结果,我们提出了一个火车征征训练(TCT)程序来避开此问题:首先,使用现成方法(例如FedAvg)学习功能;然后,优化从网络的经验神经切线核近似获得的共透性问题。当客户具有不同的数据时,我们的技术可在FMNIST上的准确性提高高达36%,而CIFAR10的准确性提高了 +37%。
translated by 谷歌翻译
Federated学习(FL)最近已成为流行的隐私合作学习范式。但是,它遭受了客户之间非独立和相同分布的(非IID)数据的困扰。在本文中,我们提出了一个新颖的框架,称为合成数据辅助联合学习(SDA-FL),以通过共享合成数据来解决这一非IID挑战。具体而言,每个客户端都预测了本地生成对抗网络(GAN)以生成差异化私有合成数据,这些数据被上传到参数服务器(PS)以构建全局共享的合成数据集。为了为合成数据集生成自信的伪标签,我们还提出了PS执行的迭代伪标记机制。本地私人数据集和合成数据集与自信的伪标签的结合可导致客户之间的数据分布几乎相同,从而提高了本地模型之间的一致性并使全球聚合受益。广泛的实验证明,在监督和半监督的设置下,所提出的框架在几个基准数据集中的大幅度优于基线方法。
translated by 谷歌翻译
一滴联合学习(FL)最近被出现为有希望的方法,允许中央服务器在单个通信中学习模型。尽管通信成本低,但现有的一次性的单次方法大多是不切实际或面临的固有限制,例如,需要公共数据集,客户的型号是同质的,需要上传其他数据/型号信息。为了克服这些问题,我们提出了一种更实用的无数据方法,名为FEDSYN的一枪框架,具有异质性。我们的Fedsyn通过数据生成阶段和模型蒸馏阶段列出全球模型。据我们所知,FEDSYN是由于以下优点,FEDSYN可以实际应用于各种实际应用程序的方法:(1)FEDSYN不需要在客户端之间传输的其他信息(模型参数除外)服务器; (2)FEDSYN不需要任何用于培训的辅助数据集; (3)FEDSYN是第一个考虑FL中的模型和统计异质性,即客户的数据是非IID,不同的客户端可能具有不同的模型架构。关于各种现实世界数据集的实验表明了我们的Fedsyn的优越性。例如,当数据是非IID时,FEDSYN在CIFAR10数据集中优于CEFAR10数据集的最佳基线方法FED-ADI的最佳基准方法。
translated by 谷歌翻译
The statistical heterogeneity of the non-independent and identically distributed (non-IID) data in local clients significantly limits the performance of federated learning. Previous attempts like FedProx, SCAFFOLD, MOON, FedNova and FedDyn resort to an optimization perspective, which requires an auxiliary term or re-weights local updates to calibrate the learning bias or the objective inconsistency. However, in addition to previous explorations for improvement in federated averaging, our analysis shows that another critical bottleneck is the poorer optima of client models in more heterogeneous conditions. We thus introduce a data-driven approach called FedSkip to improve the client optima by periodically skipping federated averaging and scattering local models to the cross devices. We provide theoretical analysis of the possible benefit from FedSkip and conduct extensive experiments on a range of datasets to demonstrate that FedSkip achieves much higher accuracy, better aggregation efficiency and competing communication efficiency. Source code is available at: https://github.com/MediaBrain-SJTU/FedSkip.
translated by 谷歌翻译
将知识蒸馏应用于个性化的跨筒仓联合学习,可以很好地减轻用户异质性的问题。然而,这种方法需要一个代理数据集,这很难在现实世界中获得。此外,基于参数平均的全球模型将导致用户隐私的泄漏。我们介绍了一个分布式的三位玩家GaN来实现客户之间的DataFree共蒸馏。该技术减轻了用户异质性问题,更好地保护用户隐私。我们证实,GaN产生的方法可以使联合蒸馏更有效和稳健,并且在获得全球知识的基础上,共蒸馏可以为各个客户达到良好的性能。我们对基准数据集的广泛实验证明了与最先进的方法的卓越的泛化性能。
translated by 谷歌翻译
Federated Learning有望在不访问数据的情况下与多个客户进行协作培训模型的能力,但是当客户的数据分布彼此差异时脆弱。这种差异进一步导致了困境:“我们是否应该优先考虑学习模型的通用性能(用于服务器的将来使用)或其个性化绩效(对于每个客户端)?”这两个看似竞争的目标使社区分裂了专注于一个或另一个,但在本文中,我们表明可以同时实现这两者。具体而言,我们提出了一个新颖的联邦学习框架,该框架将模型的双重职责与两个预测任务相结合。一方面,我们介绍了一个损失家族,这些损失家庭对非相同的班级分布,使客户能够培训一个通用的预测指标,并以一致的目标培训。另一方面,我们将个性化预测变量作为一种轻巧的自适应模块,以最大程度地减少每个客户在通用预测指标上的经验风险。借助我们将联合强大的脱钩(FED-ROD)命名的两个损失的两次挑战框架,学识渊博的模型可以同时实现最先进的通用和个性化的性能,从而实质上弥补了这两个任务。
translated by 谷歌翻译
联合学习(FL)根据多个本地客户端协同聚合共享全球模型,同时保持培训数据分散以保护数据隐私。但是,标准的FL方法忽略了嘈杂的客户问题,这可能会损害聚合模型的整体性能。在本文中,我们首先分析了嘈杂的客户声明,然后用不同的噪声分布模型噪声客户端(例如,Bernoulli和截断的高斯分布)。要使用嘈杂的客户,我们提出了一个简单但有效的FL框架,名为联邦嘈杂的客户学习(FED-NCL),它是一个即插即用算法,并包含两个主要组件:动态的数据质量测量(DQM)量化每个参与客户端的数据质量,以及噪声鲁棒聚合(NRA),通过共同考虑本地训练数据和每个客户端的数据质量来自适应地聚合每个客户端的本地模型。我们的FED-NCL可以轻松应用于任何标准的流行流以处理嘈杂的客户端问题。各种数据集的实验结果表明,我们的算法提高了具有嘈杂客户端的不同现实系统的性能。
translated by 谷歌翻译
联合学习(FL)框架使Edge客户能够协作学习共享的推理模型,同时保留对客户的培训数据的隐私。最近,已经采取了许多启发式方法来概括集中化的自适应优化方法,例如SGDM,Adam,Adagrad等,以提高收敛性和准确性的联合设置。但是,关于在联合设置中的位置以及如何设计和利用自适应优化方法的理论原理仍然很少。这项工作旨在从普通微分方程(ODE)的动力学的角度开发新的自适应优化方法,以开发FL的新型自适应优化方法。首先,建立了一个分析框架,以在联合优化方法和相应集中优化器的ODES分解之间建立连接。其次,基于这个分析框架,开发了一种动量解耦自适应优化方法FedDA,以充分利用每种本地迭代的全球动量并加速训练收敛。最后但并非最不重要的一点是,在训练过程结束时,全部批处理梯度用于模仿集中式优化,以确保收敛并克服由自适应优化方法引起的可能的不一致。
translated by 谷歌翻译
联邦学习(FL)旨在以隐私的方式从大规模的分散设备中学习联合知识。但是,由于高质量标记的数据需要昂贵的人类智能和努力,因此带有错误标签的数据(称为嘈杂标签)无处不在,实际上不可避免地会导致性能退化。尽管提出了许多直接处理嘈杂标签的方法,但这些方法要么需要过多的计算开销,要么违反FL的隐私保护原则。为此,我们将重点放在FL上,目的是减轻嘈杂标签所产生的性能退化,同时保证数据隐私。具体而言,我们提出了一种局部自我调节方法,该方法通过隐式阻碍模型记忆噪声标签并明确地缩小了使用自我蒸馏之间的原始实例和增强实例之间的模型输出差异,从而有效地规范了局部训练过程。实验结果表明,我们提出的方法可以在三个基准数据集上的各种噪声水平中获得明显的抵抗力。此外,我们将方法与现有的最新方法集成在一起,并在实际数据集服装1M上实现卓越的性能。该代码可在https://github.com/sprinter1999/fedlsr上找到。
translated by 谷歌翻译
聚集的联合学习(FL)已显示通过将客户分组为群集,从而产生有希望的结果。这在单独的客户群在其本地数据的分布方面有显着差异的情况下特别有效。现有的集群FL算法实质上是在试图将客户群体组合在一起,以便同一集群中的客户可以利用彼此的数据来更好地执行联合学习。但是,先前的群集FL算法试图在培训期间间接学习这些分布相似性,这可能会很耗时,因为可能需要许多回合的联合学习,直到群集的形成稳定为止。在本文中,我们提出了一种新的联合学习方法,该方法直接旨在通过分析客户数据子空间之间的主要角度来有效地识别客户之间的分布相似性。每个客户端都以单一的方式在其本地数据上应用截断的奇异值分解(SVD)步骤,以得出一小部分主向量,该量提供了一个签名,可简洁地捕获基础分布的主要特征。提供了一组主要的主向量,以便服务器可以直接识别客户端之间的分布相似性以形成簇。这是通过比较这些主要向量跨越的客户数据子空间之间主要角度的相似性来实现的。该方法提供了一个简单而有效的集群FL框架,该框架解决了广泛的数据异质性问题,而不是标签偏斜的更简单的非iids形式。我们的聚类FL方法还可以为非凸目标目标提供融合保证。我们的代码可在https://github.com/mmorafah/pacfl上找到。
translated by 谷歌翻译
在联合学习(FL)中的客户端的异质性通常会在梯度空间中发生客户的知识聚合时阻碍优化融合和泛化性能。例如,客户端可以在数据分发,网络延迟,输入/输出空间和/或模型架构方面不同,这可以很容易地导致其本地梯度的未对准。为了提高异质性的容忍度,我们提出了一种新的联合原型学习(FedProto)框架,其中客户端和服务器传达了抽象类原型而不是梯度。 FEDPROTO聚合从不同客户端收集的本地原型,然后将全局原型发送回所有客户端,以规范本地模型的培训。每个客户端的训练旨在最大限度地减少本地数据上的分类错误,同时保持所产生的本地原型靠近相应的全球范围。此外,我们在非凸起目标下对FedProto的收敛速度提供了理论分析。在实验中,我们提出了一种针对异构FL定制的基准设置,FEDPROTO优于多个数据集上的几种方法。
translated by 谷歌翻译
在这项工作中,我们提出了FedSSO,这是一种用于联合学习的服务器端二阶优化方法(FL)。与以前朝这个方向的工作相反,我们在准牛顿方法中采用了服务器端近似,而无需客户的任何培训数据。通过这种方式,我们不仅将计算负担从客户端转移到服务器,而且还消除了客户和服务器之间二阶更新的附加通信。我们为我们的新方法的收敛提供了理论保证,并从经验上证明了我们在凸面和非凸面设置中的快速收敛和沟通节省。
translated by 谷歌翻译
自从联合学习(FL)被引入具有隐私保护的分散学习技术以来,分布式数据的统计异质性是实现FL应用中实现稳健性能和稳定收敛性的主要障碍。已经研究了模型个性化方法来克服这个问题。但是,现有的方法主要是在完全标记的数据的先决条件下,这在实践中是不现实的,由于需要专业知识。由部分标记的条件引起的主要问题是,标记数据不足的客户可能会遭受不公平的性能增益,因为他们缺乏足够的本地分销见解来自定义全球模型。为了解决这个问题,1)我们提出了一个新型的个性化的半监督学习范式,该范式允许部分标记或未标记的客户寻求与数据相关的客户(助手代理)的标签辅助,从而增强他们对本地数据的认识; 2)基于此范式,我们设计了一个基于不确定性的数据关系度量,以确保选定的帮助者可以提供值得信赖的伪标签,而不是误导当地培训; 3)为了减轻助手搜索引入的网络过载,我们进一步开发了助手选择协议,以实现有效的绩效牺牲的有效沟通。实验表明,与其他具有部分标记数据的相关作品相比,我们提出的方法可以获得卓越的性能和更稳定的收敛性,尤其是在高度异质的环境中。
translated by 谷歌翻译