传统的联邦优化方法的性能较差(即降低准确性),尤其是对于高度偏斜的数据。在本文中,我们调查了佛罗里达州的标签分布偏斜,在那里标签的分布各不相同。首先,我们从统计视图研究了标签分布偏斜。我们在理论上和经验上都证明了基于软马克斯跨凝结的先前方法不合适,这可能会导致本地模型非常适合少数群体和缺失的类别。此外,我们从理论上引入了一个偏离,以测量本地更新后梯度的偏差。最后,我们建议通过\ textbf {l} ogits \ textbf {c}启动)FedLc(\ textbf {fed {fed}学习,该学习根据每个类别的出现可能性。 FedLC通过添加成对标签的边距将细粒度校准的跨透镜损失应用于本地更新。联合数据集和现实世界数据集的广泛实验表明,联邦快递会导致更准确的全球模型和大大改善的性能。此外,将其他FL方法集成到我们的方法中可以进一步增强全球模型的性能。
translated by 谷歌翻译
一滴联合学习(FL)最近被出现为有希望的方法,允许中央服务器在单个通信中学习模型。尽管通信成本低,但现有的一次性的单次方法大多是不切实际或面临的固有限制,例如,需要公共数据集,客户的型号是同质的,需要上传其他数据/型号信息。为了克服这些问题,我们提出了一种更实用的无数据方法,名为FEDSYN的一枪框架,具有异质性。我们的Fedsyn通过数据生成阶段和模型蒸馏阶段列出全球模型。据我们所知,FEDSYN是由于以下优点,FEDSYN可以实际应用于各种实际应用程序的方法:(1)FEDSYN不需要在客户端之间传输的其他信息(模型参数除外)服务器; (2)FEDSYN不需要任何用于培训的辅助数据集; (3)FEDSYN是第一个考虑FL中的模型和统计异质性,即客户的数据是非IID,不同的客户端可能具有不同的模型架构。关于各种现实世界数据集的实验表明了我们的Fedsyn的优越性。例如,当数据是非IID时,FEDSYN在CIFAR10数据集中优于CEFAR10数据集的最佳基线方法FED-ADI的最佳基准方法。
translated by 谷歌翻译
联合学习(FL),使不同的医疗机构或客户能够在没有数据隐私泄漏的情况下进行协作培训模型,最近在医学成像社区中引起了极大的关注。尽管已经对客户间数据异质性进行了彻底的研究,但由于存在罕见疾病,阶级失衡问题仍然不足。在本文中,我们提出了一个新型的FL框架,用于医学图像分类,尤其是在处理罕见疾病的数据异质性方面。在Fedrare中,每个客户在本地训练一个模型,以通过客户内部监督对比度学习提取高度分离的潜在特征,以进行分类。考虑到有限的稀有疾病数据,我们建立了积极的样本队列以进行增强(即数据重采样)。 Fedrare中的服务器将从客户端收集潜在功能,并自动选择最可靠的潜在功能作为发送给客户的指南。然后,每个客户都会通过局部间的对比损失共同训练,以使其潜在特征与完整课程的联合潜在特征保持一致。通过这种方式,跨客户的参数/特征差异有效地最小化,从而可以更好地收敛和性能改进。关于皮肤病变诊断的公共可用数据集的实验结果表明,Fedrare的表现出色。在四个客户没有罕见病样本的10客户联合环境下,Fedrare的平均水平准确度平均增长了9.60%和5.90%,与FedAvg和FedAvg的基线框架和FedArt方法分别相比。考虑到在临床情况下存在罕见疾病的董事会,我们认为Fedrare将使未来的FL框架设计受益于医学图像分类。本文的源代码可在https://github.com/wnn2000/fedrare上公开获得。
translated by 谷歌翻译
联合学习(FL)是一种新兴技术,用于协作训练全球机器学习模型,同时将数据局限于用户设备。FL实施实施的主要障碍是用户之间的非独立且相同的(非IID)数据分布,这会减慢收敛性和降低性能。为了解决这个基本问题,我们提出了一种方法(comfed),以增强客户端和服务器侧的整个培训过程。舒适的关键思想是同时利用客户端变量减少技术来促进服务器聚合和全局自适应更新技术以加速学习。我们在CIFAR-10分类任务上的实验表明,Comfed可以改善专用于非IID数据的最新算法。
translated by 谷歌翻译
Federated learning allows multiple clients to collaboratively train a model without exchanging their data, thus preserving data privacy. Unfortunately, it suffers significant performance degradation under heterogeneous data at clients. Common solutions in local training involve designing a specific auxiliary loss to regularize weight divergence or feature inconsistency. However, we discover that these approaches fall short of the expected performance because they ignore the existence of a vicious cycle between classifier divergence and feature mapping inconsistency across clients, such that client models are updated in inconsistent feature space with diverged classifiers. We then propose a simple yet effective framework named Federated learning with Feature Anchors (FedFA) to align the feature mappings and calibrate classifier across clients during local training, which allows client models updating in a shared feature space with consistent classifiers. We demonstrate that this modification brings similar classifiers and a virtuous cycle between feature consistency and classifier similarity across clients. Extensive experiments show that FedFA significantly outperforms the state-of-the-art federated learning algorithms on various image classification datasets under label and feature distribution skews.
translated by 谷歌翻译
联邦学习〜(FL)最近引起了学术界和行业的越来越多的关注,其最终目标是在隐私和沟通限制下进行协作培训。现有的基于FL算法的现有迭代模型需要大量的通信回合,以获得良好的模型,这是由于不同客户之间的极为不平衡和非平衡的I.D数据分配。因此,我们建议FedDM从多个本地替代功能中构建全球培训目标,这使服务器能够获得对损失格局的更全球视野。详细说明,我们在每个客户端构建了合成数据集,以在本地匹配从原始数据到分发匹配的损失景观。与笨拙的模型权重相比,FedDM通过传输更多信息和较小的合成数据来降低通信回合并提高模型质量。我们对三个图像分类数据集进行了广泛的实验,结果表明,在效率和模型性能方面,我们的方法可以优于其他FL的实验。此外,我们证明,FedDM可以适应使用高斯机制来保护差异隐私,并在相同的隐私预算下训练更好的模型。
translated by 谷歌翻译
Federated learning is a popular paradigm for machine learning. Ideally, federated learning works best when all clients share a similar data distribution. However, it is not always the case in the real world. Therefore, the topic of federated learning on heterogeneous data has gained more and more effort from both academia and industry. In this project, we first do extensive experiments to show how data skew and quantity skew will affect the performance of state-of-art federated learning algorithms. Then we propose a new algorithm FedMix which adjusts existing federated learning algorithms and we show its performance. We find that existing state-of-art algorithms such as FedProx and FedNova do not have a significant improvement in all testing cases. But by testing the existing and new algorithms, it seems that tweaking the client side is more effective than tweaking the server side.
translated by 谷歌翻译
Federated learning achieves joint training of deep models by connecting decentralized data sources, which can significantly mitigate the risk of privacy leakage. However, in a more general case, the distributions of labels among clients are different, called ``label distribution skew''. Directly applying conventional federated learning without consideration of label distribution skew issue significantly hurts the performance of the global model. To this end, we propose a novel federated learning method, named FedMGD, to alleviate the performance degradation caused by the label distribution skew issue. It introduces a global Generative Adversarial Network to model the global data distribution without access to local datasets, so the global model can be trained using the global information of data distribution without privacy leakage. The experimental results demonstrate that our proposed method significantly outperforms the state-of-the-art on several public benchmarks. Code is available at \url{https://github.com/Sheng-T/FedMGD}.
translated by 谷歌翻译
跨不同边缘设备(客户)局部数据的分布不均匀,导致模型训练缓慢,并降低了联合学习的准确性。幼稚的联合学习(FL)策略和大多数替代解决方案试图通过加权跨客户的深度学习模型来实现更多公平。这项工作介绍了在现实世界数据集中遇到的一种新颖的非IID类型,即集群键,其中客户组具有具有相似分布的本地数据,从而导致全局模型收敛到过度拟合的解决方案。为了处理非IID数据,尤其是群集串数据的数据,我们提出了FedDrl,这是一种新型的FL模型,它采用了深厚的强化学习来适应每个客户的影响因素(将用作聚合过程中的权重)。在一组联合数据集上进行了广泛的实验证实,拟议的FEDDR可以根据CIFAR-100数据集的平均平均为FedAvg和FedProx方法提高了有利的改进,例如,高达4.05%和2.17%。
translated by 谷歌翻译
联合学习(FL)根据多个本地客户端协同聚合共享全球模型,同时保持培训数据分散以保护数据隐私。但是,标准的FL方法忽略了嘈杂的客户问题,这可能会损害聚合模型的整体性能。在本文中,我们首先分析了嘈杂的客户声明,然后用不同的噪声分布模型噪声客户端(例如,Bernoulli和截断的高斯分布)。要使用嘈杂的客户,我们提出了一个简单但有效的FL框架,名为联邦嘈杂的客户学习(FED-NCL),它是一个即插即用算法,并包含两个主要组件:动态的数据质量测量(DQM)量化每个参与客户端的数据质量,以及噪声鲁棒聚合(NRA),通过共同考虑本地训练数据和每个客户端的数据质量来自适应地聚合每个客户端的本地模型。我们的FED-NCL可以轻松应用于任何标准的流行流以处理嘈杂的客户端问题。各种数据集的实验结果表明,我们的算法提高了具有嘈杂客户端的不同现实系统的性能。
translated by 谷歌翻译
The statistical heterogeneity of the non-independent and identically distributed (non-IID) data in local clients significantly limits the performance of federated learning. Previous attempts like FedProx, SCAFFOLD, MOON, FedNova and FedDyn resort to an optimization perspective, which requires an auxiliary term or re-weights local updates to calibrate the learning bias or the objective inconsistency. However, in addition to previous explorations for improvement in federated averaging, our analysis shows that another critical bottleneck is the poorer optima of client models in more heterogeneous conditions. We thus introduce a data-driven approach called FedSkip to improve the client optima by periodically skipping federated averaging and scattering local models to the cross devices. We provide theoretical analysis of the possible benefit from FedSkip and conduct extensive experiments on a range of datasets to demonstrate that FedSkip achieves much higher accuracy, better aggregation efficiency and competing communication efficiency. Source code is available at: https://github.com/MediaBrain-SJTU/FedSkip.
translated by 谷歌翻译
联邦学习(FL)试图在本地客户端分发模型培训,而无需在集中式数据中心收集数据,从而消除了数据私人关系问题。 FL的一个主要挑战是数据异质性(每个客户的数据分布可能会有所不同),因为它可能导致本地客户的权重差异并减慢全球融合。当前专为数据异质性设计的SOTA FL方法通常会施加正则化以限制非IID数据的影响,并且是状态算法,即它们随着时间的推移维持局部统计数据。尽管有效,但这些方法只能用于FL的特殊情况,仅涉及少数可靠的客户。对于fl的更典型应用,客户端数量很大(例如,边缘设备和移动应用程序),这些方法无法应用,激发了对任何可用于任何数量客户端使用的无状态方法的无状态方法的需求。我们得出了一阶梯度正则化,以惩罚由于本地数据异质性而导致的本地更新不一致。具体而言,为了减轻权重差异,我们将全局数据分布的一阶近似引入本地目标,该目标凭直觉地惩罚了与全局更新相反方向的更新。最终结果是一种无状态的FL算法,可实现1)在非IID数据分布下,比SOTA方法明显更快地收敛(即较少的通信回合)和2)总体融合性能更高。重要的是,我们的方法不会对客户大小施加不切实际的限制,从而可以从大多数FL应用程序中向大量客户学习。
translated by 谷歌翻译
由于参与客户的异构特征,联邦学习往往受到不稳定和缓慢的收敛。当客户参与比率低时,这种趋势加剧了,因为从每个轮的客户收集的信息容易更加不一致。为了解决挑战,我们提出了一种新的联合学习框架,这提高了服务器端聚合步骤的稳定性,这是通过将客户端发送与全局梯度估计的加速模型来引导本地梯度更新来实现的。我们的算法自然地聚合并将全局更新信息与没有额外的通信成本的参与者传达,并且不需要将过去的模型存储在客户端中。我们还规范了本地更新,以进一步降低偏差并提高本地更新的稳定性。我们根据各种设置执行了关于实际数据的全面实证研究,与最先进的方法相比,在准确性和通信效率方面表现出了拟议方法的显着性能,特别是具有低客户参与率。我们的代码可在https://github.com/ninigapa0 / fedagm获得
translated by 谷歌翻译
作为一种有希望的隐私机器学习方法,联合学习(FL)可以使客户跨客户培训,而不会损害其机密的本地数据。但是,现有的FL方法遇到了不均分布数据的推理性能低的问题,因为它们中的大多数依赖于联合平均(FIDAVG)基于联合的聚合。通过以粗略的方式平均模型参数,FedAvg将局部模型的个体特征黯然失色,这极大地限制了FL的推理能力。更糟糕的是,在每一轮FL培训中,FedAvg向客户端向客户派遣了相同的初始本地模型,这很容易导致对最佳全局模型的局限性搜索。为了解决上述问题,本文提出了一种新颖有效的FL范式,名为FEDMR(联合模型重组)。与传统的基于FedAvg的方法不同,FEDMR的云服务器将收集到的本地型号的每一层层混合,并重组它们以实现新的模型,以供客户端培训。由于在每场FL比赛中进行了细粒度的模型重组和本地培训,FEDMR可以迅速为所有客户找出一个全球最佳模型。全面的实验结果表明,与最先进的FL方法相比,FEDMR可以显着提高推理准确性而不会引起额外的通信开销。
translated by 谷歌翻译
Data heterogeneity across clients in federated learning (FL) settings is a widely acknowledged challenge. In response, personalized federated learning (PFL) emerged as a framework to curate local models for clients' tasks. In PFL, a common strategy is to develop local and global models jointly - the global model (for generalization) informs the local models, and the local models (for personalization) are aggregated to update the global model. A key observation is that if we can improve the generalization ability of local models, then we can improve the generalization of global models, which in turn builds better personalized models. In this work, we consider class imbalance, an overlooked type of data heterogeneity, in the classification setting. We propose FedNH, a novel method that improves the local models' performance for both personalization and generalization by combining the uniformity and semantics of class prototypes. FedNH initially distributes class prototypes uniformly in the latent space and smoothly infuses the class semantics into class prototypes. We show that imposing uniformity helps to combat prototype collapse while infusing class semantics improves local models. Extensive experiments were conducted on popular classification datasets under the cross-device setting. Our results demonstrate the effectiveness and stability of our method over recent works.
translated by 谷歌翻译
Non-IID data distribution across clients and poisoning attacks are two main challenges in real-world federated learning systems. While both of them have attracted great research interest with specific strategies developed, no known solution manages to address them in a unified framework. To jointly overcome both challenges, we propose SmartFL, a generic approach that optimizes the server-side aggregation process with a small clean server-collected proxy dataset (e.g., around one hundred samples, 0.2% of the dataset) via a subspace training technique. Specifically, the aggregation weight of each participating client at each round is optimized using the server-collected proxy data, which is essentially the optimization of the global model in the convex hull spanned by client models. Since at each round, the number of tunable parameters optimized on the server side equals the number of participating clients (thus independent of the model size), we are able to train a global model with massive parameters using only a small amount of proxy data. We provide theoretical analyses of the convergence and generalization capacity for SmartFL. Empirically, SmartFL achieves state-of-the-art performance on both federated learning with non-IID data distribution and federated learning with malicious clients. The source code will be released.
translated by 谷歌翻译
由于客户之间统计异质性的诅咒,采用个性化联合学习方法已成为成功部署基于联合学习的服务的基本选择。在个性化技术的各种分支中,基于模型混合物的个性化方法是优选的,因为每个客户都有自己的个性化模型,因为联合学习。它通常需要本地模型和联合模型,但是这种方法要么仅限于部分参数交换,要么需要其他本地更新,每种都对新颖客户端无助,并且对客户的计算能力负担重。由于已经发现了两个或更多独立深度网络之间包含多种低损失解决方案的连接子空间的存在,因此我们将这种有趣的属性与基于模型混合物的个性化联合学习方法相结合,以改善个性化的性能。我们提出了一种个性化的联合学习方法,该方法诱导了体重空间中本地和联合模型的优势之间的明确联系,以相互促进。通过在几个基准数据集上进行的广泛实验,我们证明了我们的方法在个性化绩效和鲁棒性方面都可以在现实服务中实现有问题的情况。
translated by 谷歌翻译
The heterogeneity of hardware and data is a well-known and studied problem in the community of Federated Learning (FL) as running under heterogeneous settings. Recently, custom-size client models trained with Knowledge Distillation (KD) has emerged as a viable strategy for tackling the heterogeneity challenge. However, previous efforts in this direction are aimed at client model tuning rather than their impact onto the knowledge aggregation of the global model. Despite performance of global models being the primary objective of FL systems, under heterogeneous settings client models have received more attention. Here, we provide more insights into how the chosen approach for training custom client models has an impact on the global model, which is essential for any FL application. We show the global model can fully leverage the strength of KD with heterogeneous data. Driven by empirical observations, we further propose a new approach that combines KD and Learning without Forgetting (LwoF) to produce improved personalised models. We bring heterogeneous FL on pair with the mighty FedAvg of homogeneous FL, in realistic deployment scenarios with dropping clients.
translated by 谷歌翻译
空中接入网络已被识别为各种事物互联网(物联网)服务和应用程序的重要驾驶员。特别是,以无人机互联网为中心的空中计算网络基础设施已经掀起了自动图像识别的新革命。这种新兴技术依赖于共享地面真理标记的无人机(UAV)群之间的数据,以培训高质量的自动图像识别模型。但是,这种方法将带来数据隐私和数据可用性挑战。为了解决这些问题,我们首先向一个半监督的联邦学习(SSFL)框架提供隐私保留的UAV图像识别。具体而言,我们提出了模型参数混合策略,以改善两个现实场景下的FL和半监督学习方法的天真组合(标签 - 客户端和标签 - 服务器),其被称为联合混合(FEDMIX)。此外,在不同环境中使用不同的相机模块,在不同环境中使用不同的相机模块,在不同的相机模块,即统计异质性,存在显着差异。为了减轻统计异质性问题,我们提出了基于客户参与训练的频率的聚合规则,即FedFReq聚合规则,可以根据其频率调整相应的本地模型的权重。数值结果表明,我们提出的方法的性能明显优于当前基线的性能,并且对不同的非IID等级的客户数据具有强大。
translated by 谷歌翻译
聚集的联合学习(FL)已显示通过将客户分组为群集,从而产生有希望的结果。这在单独的客户群在其本地数据的分布方面有显着差异的情况下特别有效。现有的集群FL算法实质上是在试图将客户群体组合在一起,以便同一集群中的客户可以利用彼此的数据来更好地执行联合学习。但是,先前的群集FL算法试图在培训期间间接学习这些分布相似性,这可能会很耗时,因为可能需要许多回合的联合学习,直到群集的形成稳定为止。在本文中,我们提出了一种新的联合学习方法,该方法直接旨在通过分析客户数据子空间之间的主要角度来有效地识别客户之间的分布相似性。每个客户端都以单一的方式在其本地数据上应用截断的奇异值分解(SVD)步骤,以得出一小部分主向量,该量提供了一个签名,可简洁地捕获基础分布的主要特征。提供了一组主要的主向量,以便服务器可以直接识别客户端之间的分布相似性以形成簇。这是通过比较这些主要向量跨越的客户数据子空间之间主要角度的相似性来实现的。该方法提供了一个简单而有效的集群FL框架,该框架解决了广泛的数据异质性问题,而不是标签偏斜的更简单的非iids形式。我们的聚类FL方法还可以为非凸目标目标提供融合保证。我们的代码可在https://github.com/mmorafah/pacfl上找到。
translated by 谷歌翻译