由于客户之间统计异质性的诅咒,采用个性化联合学习方法已成为成功部署基于联合学习的服务的基本选择。在个性化技术的各种分支中,基于模型混合物的个性化方法是优选的,因为每个客户都有自己的个性化模型,因为联合学习。它通常需要本地模型和联合模型,但是这种方法要么仅限于部分参数交换,要么需要其他本地更新,每种都对新颖客户端无助,并且对客户的计算能力负担重。由于已经发现了两个或更多独立深度网络之间包含多种低损失解决方案的连接子空间的存在,因此我们将这种有趣的属性与基于模型混合物的个性化联合学习方法相结合,以改善个性化的性能。我们提出了一种个性化的联合学习方法,该方法诱导了体重空间中本地和联合模型的优势之间的明确联系,以相互促进。通过在几个基准数据集上进行的广泛实验,我们证明了我们的方法在个性化绩效和鲁棒性方面都可以在现实服务中实现有问题的情况。
translated by 谷歌翻译
联邦学习(FL)是一种分布式学习方法,它为医学机构提供了在全球模型中合作的前景,同时保留患者的隐私。尽管大多数医疗中心执行类似的医学成像任务,但它们的差异(例如专业,患者数量和设备)导致了独特的数据分布。数据异质性对FL和本地模型的个性化构成了挑战。在这项工作中,我们研究了FL生产中间半全球模型的一种自适应分层聚类方法,因此具有相似数据分布的客户有机会形成更专业的模型。我们的方法形成了几个群集,这些集群由具有最相似数据分布的客户端组成;然后,每个集群继续分开训练。在集群中,我们使用元学习来改善参与者模型的个性化。我们通过评估我们在HAM10K数据集上的建议方法和极端异质数据分布的HAM10K数据集上的我们提出的方法,将聚类方法与经典的FedAvg和集中式培训进行比较。我们的实验表明,与标准的FL方法相比,分类精度相比,异质分布的性能显着提高。此外,我们表明,如果在群集中应用,则模型会更快地收敛,并且仅使用一小部分数据,却优于集中式培训。
translated by 谷歌翻译
近年来,个性化联邦学习(PFL)引起了越来越关注其在客户之间处理统计异质性的潜力。然而,最先进的PFL方法依赖于服务器端的模型参数聚合,这需要所有模型具有相同的结构和大小,因此限制了应用程序以实现更多异构场景。要处理此类模型限制,我们利用异构模型设置的潜力,并提出了一种新颖的培训框架,为不同客户使用个性化模型。具体而言,我们将原始PFL中的聚合过程分为个性化组知识转移训练算法,即KT-PFL,这使得每个客户端能够在服务器端维护个性化软预测以指导其他人的本地培训。 KT-PFL通过使用知识系数矩阵的所有本地软预测的线性组合更新每个客户端的个性化软预测,这可以自适应地加强拥有类似数据分布的客户端之间的协作。此外,为了量化每个客户对他人的个性化培训的贡献,知识系数矩阵是参数化的,以便可以与模型同时培训。知识系数矩阵和模型参数在每轮梯度下降方式之后的每一轮中可替代地更新。在不同的设置(异构模型和数据分布)下进行各种数据集(EMNIST,Fashion \ _Mnist,CIFAR-10)的广泛实验。据证明,所提出的框架是第一个通过参数化群体知识转移实现个性化模型培训的联邦学习范例,同时实现与最先进的算法比较的显着性能增益。
translated by 谷歌翻译
联合学习(FL)有助于多个客户共同培训机器学习模型,而无需共享其私人数据。但是,客户的非IID数据给FL带来了艰巨的挑战。现有的个性化方法在很大程度上依赖于将一个完整模型作为基本单元的默认处理方法,而忽略了不同层对客户非IID数据的重要性。在这项工作中,我们提出了一个新的框架,联合模型组成部分自我注意力(FEDMCSA),以处理FL中的非IID数据,该数据采用模型组件自我注意机制来颗粒片促进不同客户之间的合作。这种机制促进了相似模型组件之间的合作,同时减少了差异很大的模型组件之间的干扰。我们进行了广泛的实验,以证明FEDMCSA在四个基准数据集上的表现优于先前的方法。此外,我们从经验上展示了模型组成部分自我发项机制的有效性,该机制与现有的个性化FL互补,可以显着提高FL的性能。
translated by 谷歌翻译
The mediocre performance of conventional federated learning (FL) over heterogeneous data has been facilitating personalized FL solutions, where, unlike conventional FL which trains a single global consensus model, different models are allowed for different clients. However, in most existing personalized FL algorithms, the collaborative knowledge across the federation was only implicitly passed to the clients in ways such as model aggregation or regularization. We observed that this implicit knowledge transfer fails to maximize the potential value of each client's empirical risk toward other clients. Based on our observation, in this work, we propose Personalized Global Federated Learning (PGFed), a novel personalized FL framework that enables each client to personalize its own global objective by explicitly and adaptively aggregating the empirical risks of itself and other clients. To avoid massive ($O(N^2)$) communication overhead and potential privacy leakage, each client's risk is estimated through a first-order approximation for other clients' adaptive risk aggregation. On top of PGFed, we develop a momentum upgrade, dubbed PGFedMo, to more efficiently utilize clients' empirical risks. Our extensive experiments under different federated settings with benchmark datasets show consistent improvements of PGFed over the compared state-of-the-art alternatives.
translated by 谷歌翻译
Non-IID data distribution across clients and poisoning attacks are two main challenges in real-world federated learning systems. While both of them have attracted great research interest with specific strategies developed, no known solution manages to address them in a unified framework. To jointly overcome both challenges, we propose SmartFL, a generic approach that optimizes the server-side aggregation process with a small clean server-collected proxy dataset (e.g., around one hundred samples, 0.2% of the dataset) via a subspace training technique. Specifically, the aggregation weight of each participating client at each round is optimized using the server-collected proxy data, which is essentially the optimization of the global model in the convex hull spanned by client models. Since at each round, the number of tunable parameters optimized on the server side equals the number of participating clients (thus independent of the model size), we are able to train a global model with massive parameters using only a small amount of proxy data. We provide theoretical analyses of the convergence and generalization capacity for SmartFL. Empirically, SmartFL achieves state-of-the-art performance on both federated learning with non-IID data distribution and federated learning with malicious clients. The source code will be released.
translated by 谷歌翻译
联合学习(FL)根据多个本地客户端协同聚合共享全球模型,同时保持培训数据分散以保护数据隐私。但是,标准的FL方法忽略了嘈杂的客户问题,这可能会损害聚合模型的整体性能。在本文中,我们首先分析了嘈杂的客户声明,然后用不同的噪声分布模型噪声客户端(例如,Bernoulli和截断的高斯分布)。要使用嘈杂的客户,我们提出了一个简单但有效的FL框架,名为联邦嘈杂的客户学习(FED-NCL),它是一个即插即用算法,并包含两个主要组件:动态的数据质量测量(DQM)量化每个参与客户端的数据质量,以及噪声鲁棒聚合(NRA),通过共同考虑本地训练数据和每个客户端的数据质量来自适应地聚合每个客户端的本地模型。我们的FED-NCL可以轻松应用于任何标准的流行流以处理嘈杂的客户端问题。各种数据集的实验结果表明,我们的算法提高了具有嘈杂客户端的不同现实系统的性能。
translated by 谷歌翻译
鲁棒性正成为联合学习的另一个重要挑战,因为每个客户的数据收集过程自然都伴有嘈杂的标签。但是,由于客户的数据异质性和噪音的不同程度,这加剧了客户到客户的性能差异,因此它更加复杂且具有挑战性。在这项工作中,我们提出了一种名为FedRn的强大联合学习方法,该方法利用具有高数据专业知识或相似性的K邻居邻居。我们的方法仅通过一组选定的干净示例训练,通过其结合混合模型确定,有助于减轻低绩效客户端之间的差距。我们通过对三个现实世界或合成基准数据集进行广泛评估来证明FedRN的优势。与现有的强大训练方法相比,结果表明,在嘈杂标签的存在下,联邦烷可显着提高测试准确性。
translated by 谷歌翻译
Federated Learning有望在不访问数据的情况下与多个客户进行协作培训模型的能力,但是当客户的数据分布彼此差异时脆弱。这种差异进一步导致了困境:“我们是否应该优先考虑学习模型的通用性能(用于服务器的将来使用)或其个性化绩效(对于每个客户端)?”这两个看似竞争的目标使社区分裂了专注于一个或另一个,但在本文中,我们表明可以同时实现这两者。具体而言,我们提出了一个新颖的联邦学习框架,该框架将模型的双重职责与两个预测任务相结合。一方面,我们介绍了一个损失家族,这些损失家庭对非相同的班级分布,使客户能够培训一个通用的预测指标,并以一致的目标培训。另一方面,我们将个性化预测变量作为一种轻巧的自适应模块,以最大程度地减少每个客户在通用预测指标上的经验风险。借助我们将联合强大的脱钩(FED-ROD)命名的两个损失的两次挑战框架,学识渊博的模型可以同时实现最先进的通用和个性化的性能,从而实质上弥补了这两个任务。
translated by 谷歌翻译
知识共享和模型个性化是应对联邦学习(FL)中非IID挑战的重要组成部分。大多数现有的FL方法侧重于两个极端:1)学习共享模型,以使用非IID数据为所有客户提供服务,以及2)为每个客户(即个性化fl)学习个性化模型。有一个权衡解决方案,即群集或集群个性化的FL,旨在将相似的客户聚集到一个集群中,然后在集群中为所有客户学习共享模型。本文是通过将群集群集制定为可以统一现有方法的双层优化框架来重新审视群集的研究。我们提出了一个新的理论分析框架,以通过考虑客户之间的凝聚力来证明融合。此外,我们以一种称为加权聚类联合学习(WECFL)的算法体现了该框架。经验分析验证了理论结果,并证明了在拟议的集群非IID设置下提出的WECFL的有效性。
translated by 谷歌翻译
联合学习(FL)是数据是私人且敏感时的有前途的分布式学习框架。但是,当数据是异质且非独立且相同分布的(非IID)时,此框架中最新的解决方案并不是最佳的。我们提出了一种实用且强大的佛罗里达州个性化方法,该方法通过平衡探索和利用几种全球模型来适应异质和非IID数据。为了实现我们的个性化目标,我们使用了专家(MOE)的混合,这些专家(MOE)学会了分组彼此相似的客户,同时更有效地使用全球模型。我们表明,与病理非IID环境中的本地模型相比,我们的方法的准确性高达29.78%,高达4.38%,即使我们在IID环境中调整了方法。
translated by 谷歌翻译
传统的联邦优化方法的性能较差(即降低准确性),尤其是对于高度偏斜的数据。在本文中,我们调查了佛罗里达州的标签分布偏斜,在那里标签的分布各不相同。首先,我们从统计视图研究了标签分布偏斜。我们在理论上和经验上都证明了基于软马克斯跨凝结的先前方法不合适,这可能会导致本地模型非常适合少数群体和缺失的类别。此外,我们从理论上引入了一个偏离,以测量本地更新后梯度的偏差。最后,我们建议通过\ textbf {l} ogits \ textbf {c}启动)FedLc(\ textbf {fed {fed}学习,该学习根据每个类别的出现可能性。 FedLC通过添加成对标签的边距将细粒度校准的跨透镜损失应用于本地更新。联合数据集和现实世界数据集的广泛实验表明,联邦快递会导致更准确的全球模型和大大改善的性能。此外,将其他FL方法集成到我们的方法中可以进一步增强全球模型的性能。
translated by 谷歌翻译
经常引用联合学习的挑战是数据异质性的存在 - 不同客户的数据可能遵循非常不同的分布。已经提出了几种联合优化方法来应对这些挑战。在文献中,经验评估通常从随机初始化开始联合培训。但是,在联合学习的许多实际应用中,服务器可以访问培训任务的代理数据,该数据可用于在开始联合培训之前用于预训练模型。我们从经验上研究了使用四个常见联合学习基准数据集从联邦学习中的预训练模型开始的影响。毫不奇怪,从预先训练的模型开始,比从随机初始化开始时,缩短了达到目标错误率所需的训练时间,并使训练更准确的模型(最高40 \%)。令人惊讶的是,我们还发现,从预先训练的初始化开始联合培训时,数据异质性的效果不那么重要。相反,从预先训练的模型开始时,使用服务器上的自适应优化器(例如\ textsc {fedadam})始终导致最佳准确性。我们建议未来提出和评估联合优化方法的工作在开始随机和预训练的初始化时考虑性能。我们还认为,这项研究提出了几个问题,以进一步了解异质性在联合优化中的作用。
translated by 谷歌翻译
联合学习(FL)是一种分布式机器学习方法,其中多个客户在不交换数据的情况下协作培训联合模型。尽管FL在数据隐私保护方面取得了前所未有的成功,但其对自由骑手攻击的脆弱性吸引了人们越来越多的关注。现有的防御能力可能对高度伪装或高百分比的自由骑手无效。为了应对这些挑战,我们从新颖的角度重新考虑防御,即模型重量不断发展的频率。从经验上讲,我们获得了一种新颖的见解,即在FL的训练中,模型权重的频率不断发展,自由骑机的频率和良性客户的频率显着不同的。受到这种见解的启发,我们提出了一种基于模型权重演化频率的新型防御方法,称为WEF-DEFENSE。特别是,我们在本地训练期间首先收集重量演变的频率(定义为WEF-MATRIX)。对于每个客户端,它将本地型号的WEF-Matrix与每个迭代的模型重量一起上传到服务器。然后,服务器根据WEF-Matrix的差异将自由骑士与良性客户端分开。最后,服务器使用个性化方法为相应的客户提供不同的全局模型。在五个数据集和五个模型上进行的全面实验表明,与最先进的基线相比,WEF防御能力更好。
translated by 谷歌翻译
聚集的联合学习(FL)已显示通过将客户分组为群集,从而产生有希望的结果。这在单独的客户群在其本地数据的分布方面有显着差异的情况下特别有效。现有的集群FL算法实质上是在试图将客户群体组合在一起,以便同一集群中的客户可以利用彼此的数据来更好地执行联合学习。但是,先前的群集FL算法试图在培训期间间接学习这些分布相似性,这可能会很耗时,因为可能需要许多回合的联合学习,直到群集的形成稳定为止。在本文中,我们提出了一种新的联合学习方法,该方法直接旨在通过分析客户数据子空间之间的主要角度来有效地识别客户之间的分布相似性。每个客户端都以单一的方式在其本地数据上应用截断的奇异值分解(SVD)步骤,以得出一小部分主向量,该量提供了一个签名,可简洁地捕获基础分布的主要特征。提供了一组主要的主向量,以便服务器可以直接识别客户端之间的分布相似性以形成簇。这是通过比较这些主要向量跨越的客户数据子空间之间主要角度的相似性来实现的。该方法提供了一个简单而有效的集群FL框架,该框架解决了广泛的数据异质性问题,而不是标签偏斜的更简单的非iids形式。我们的聚类FL方法还可以为非凸目标目标提供融合保证。我们的代码可在https://github.com/mmorafah/pacfl上找到。
translated by 谷歌翻译
由于参与客户的异构特征,联邦学习往往受到不稳定和缓慢的收敛。当客户参与比率低时,这种趋势加剧了,因为从每个轮的客户收集的信息容易更加不一致。为了解决挑战,我们提出了一种新的联合学习框架,这提高了服务器端聚合步骤的稳定性,这是通过将客户端发送与全局梯度估计的加速模型来引导本地梯度更新来实现的。我们的算法自然地聚合并将全局更新信息与没有额外的通信成本的参与者传达,并且不需要将过去的模型存储在客户端中。我们还规范了本地更新,以进一步降低偏差并提高本地更新的稳定性。我们根据各种设置执行了关于实际数据的全面实证研究,与最先进的方法相比,在准确性和通信效率方面表现出了拟议方法的显着性能,特别是具有低客户参与率。我们的代码可在https://github.com/ninigapa0 / fedagm获得
translated by 谷歌翻译
联合学习(FL)是一种有效的学习框架,可帮助由于隐私和监管限制无法与集中式服务器共享数据时,帮助分布式机器学习。 FL使用基于预定义体系结构的学习的最新进展。然而,考虑到客户端的数据对服务器和数据分布是不可相同的客户端,在集中设置中发现的预定义体系结构可能不是FL中所有客户端的最佳解决方案。在这项工作中受到这项挑战的动机,我们介绍了蜘蛛,这是一种旨在搜索用于联合学习的个性化神经结构的算法框架。蜘蛛是根据两个独特特征设计的:(1)交替地以通用的方式优化一个架构 - 均匀的全球模型(Supernet),一个架构 - 异构本地模型,由基于重量共享的正则化连接到全球模型(2通过新颖的神经结构搜索(NAS)方法实现架构异构本地模型,其可以使用对准确值的操作级别扰动来逐渐选择最佳子网。实验结果表明,蜘蛛优于其他最先进的个性化方法,搜索的个性化架构更加推理效率。
translated by 谷歌翻译
Personalized Federated Learning (PFL) which collaboratively trains a federated model while considering local clients under privacy constraints has attracted much attention. Despite its popularity, it has been observed that existing PFL approaches result in sub-optimal solutions when the joint distribution among local clients diverges. To address this issue, we present Federated Modular Network (FedMN), a novel PFL approach that adaptively selects sub-modules from a module pool to assemble heterogeneous neural architectures for different clients. FedMN adopts a light-weighted routing hypernetwork to model the joint distribution on each client and produce the personalized selection of the module blocks for each client. To reduce the communication burden in existing FL, we develop an efficient way to interact between the clients and the server. We conduct extensive experiments on the real-world test beds and the results show both the effectiveness and efficiency of the proposed FedMN over the baselines.
translated by 谷歌翻译
联合学习是一种分布式的机器学习方法,其中单个服务器和多个客户端在不共享客户端数据集的情况下协作构建机器学习模型。联合学习的一个具有挑战性的问题是数据异质性(即,数据分布在客户端可能有所不同)。为了应对这个问题,众多联合学习方法旨在为客户提供个性化的联合学习,并为客户建立优化的模型。尽管现有研究通过经验评估了自己的方法,但这些研究中的实验环境(例如比较方法,数据集和客户设置)彼此不同,目前尚不清楚哪种个性化的联邦学习方法可以实现最佳性能,以及取得多少进展,可以进行多大进展。通过使用这些方法而不是标准(即非个人化)联合学习来制作。在本文中,我们通过全面的实验基准了现有的个性化联合学习的性能,以评估每种方法的特征。我们的实验研究表明,(1)没有冠军方法,(2)大数据异质性通常会导致高准确的预测,并且(3)具有微调的标准联合学习方法(例如FedAvg)通常超过了个性化的联邦学习方法。我们为研究人员开放基准工具FedBench,以通过各种实验环境进行实验研究。
translated by 谷歌翻译
随着对数据隐私和数据量迅速增加的越来越关注,联邦学习(FL)已成为重要的学习范式。但是,在FL环境中共同学习深层神经网络模型被证明是一项非平凡的任务,因为与神经网络相关的复杂性,例如跨客户的各种体系结构,神经元的置换不变性以及非线性的存在每一层的转换。这项工作介绍了一个新颖的联合异质神经网络(FEDHENN)框架,该框架允许每个客户构建个性化模型,而无需在跨客户范围内实施共同的架构。这使每个客户都可以优化本地数据并计算约束,同时仍能从其他(可能更强大)客户端的学习中受益。 Fedhenn的关键思想是使用从同行客户端获得的实例级表示,以指导每个客户的同时培训。广泛的实验结果表明,Fedhenn框架能够在跨客户的同质和异质体系结构的设置中学习更好地表现客户的模型。
translated by 谷歌翻译