联邦学习(FL)试图在本地客户端分发模型培训,而无需在集中式数据中心收集数据,从而消除了数据私人关系问题。 FL的一个主要挑战是数据异质性(每个客户的数据分布可能会有所不同),因为它可能导致本地客户的权重差异并减慢全球融合。当前专为数据异质性设计的SOTA FL方法通常会施加正则化以限制非IID数据的影响,并且是状态算法,即它们随着时间的推移维持局部统计数据。尽管有效,但这些方法只能用于FL的特殊情况,仅涉及少数可靠的客户。对于fl的更典型应用,客户端数量很大(例如,边缘设备和移动应用程序),这些方法无法应用,激发了对任何可用于任何数量客户端使用的无状态方法的无状态方法的需求。我们得出了一阶梯度正则化,以惩罚由于本地数据异质性而导致的本地更新不一致。具体而言,为了减轻权重差异,我们将全局数据分布的一阶近似引入本地目标,该目标凭直觉地惩罚了与全局更新相反方向的更新。最终结果是一种无状态的FL算法,可实现1)在非IID数据分布下,比SOTA方法明显更快地收敛(即较少的通信回合)和2)总体融合性能更高。重要的是,我们的方法不会对客户大小施加不切实际的限制,从而可以从大多数FL应用程序中向大量客户学习。
translated by 谷歌翻译
由于参与客户的异构特征,联邦学习往往受到不稳定和缓慢的收敛。当客户参与比率低时,这种趋势加剧了,因为从每个轮的客户收集的信息容易更加不一致。为了解决挑战,我们提出了一种新的联合学习框架,这提高了服务器端聚合步骤的稳定性,这是通过将客户端发送与全局梯度估计的加速模型来引导本地梯度更新来实现的。我们的算法自然地聚合并将全局更新信息与没有额外的通信成本的参与者传达,并且不需要将过去的模型存储在客户端中。我们还规范了本地更新,以进一步降低偏差并提高本地更新的稳定性。我们根据各种设置执行了关于实际数据的全面实证研究,与最先进的方法相比,在准确性和通信效率方面表现出了拟议方法的显着性能,特别是具有低客户参与率。我们的代码可在https://github.com/ninigapa0 / fedagm获得
translated by 谷歌翻译
The mediocre performance of conventional federated learning (FL) over heterogeneous data has been facilitating personalized FL solutions, where, unlike conventional FL which trains a single global consensus model, different models are allowed for different clients. However, in most existing personalized FL algorithms, the collaborative knowledge across the federation was only implicitly passed to the clients in ways such as model aggregation or regularization. We observed that this implicit knowledge transfer fails to maximize the potential value of each client's empirical risk toward other clients. Based on our observation, in this work, we propose Personalized Global Federated Learning (PGFed), a novel personalized FL framework that enables each client to personalize its own global objective by explicitly and adaptively aggregating the empirical risks of itself and other clients. To avoid massive ($O(N^2)$) communication overhead and potential privacy leakage, each client's risk is estimated through a first-order approximation for other clients' adaptive risk aggregation. On top of PGFed, we develop a momentum upgrade, dubbed PGFedMo, to more efficiently utilize clients' empirical risks. Our extensive experiments under different federated settings with benchmark datasets show consistent improvements of PGFed over the compared state-of-the-art alternatives.
translated by 谷歌翻译
联合学习的一个关键挑战是客户之间的数据异质性和失衡,这导致本地网络与全球模型不稳定的融合之间的不一致。为了减轻局限性,我们提出了一种新颖的建筑正则化技术,该技术通过在几个不同级别上接管本地和全球子网,在每个本地模型中构建多个辅助分支通过在线知识蒸馏。该提出的技术即使在非IID环境中也可以有效地鲁棒化,并且适用于各种联合学习框架,而不会产生额外的沟通成本。与现有方法相比,我们进行了全面的经验研究,并在准确性和效率方面表现出显着的性能提高。源代码可在我们的项目页面上找到。
translated by 谷歌翻译
联合学习(FL)是一种新兴技术,用于协作训练全球机器学习模型,同时将数据局限于用户设备。FL实施实施的主要障碍是用户之间的非独立且相同的(非IID)数据分布,这会减慢收敛性和降低性能。为了解决这个基本问题,我们提出了一种方法(comfed),以增强客户端和服务器侧的整个培训过程。舒适的关键思想是同时利用客户端变量减少技术来促进服务器聚合和全局自适应更新技术以加速学习。我们在CIFAR-10分类任务上的实验表明,Comfed可以改善专用于非IID数据的最新算法。
translated by 谷歌翻译
个性化联合学习(FL)是佛罗里达州的一个新兴研究领域,在客户之间存在数据异质性的情况下,可以学习一个易于适应的全球模型。但是,个性化FL的主要挑战之一是,由于客户数据与服务器隔离以确保隐私,因此非常依赖客户的计算资源来计算高阶梯度。为了解决这个问题,我们专注于服务器可以独立于客户数据独立于客户数据的问题设置,这是各种应用程序中普遍的问题设置,但在现有文献中相对尚未探索。具体而言,我们提出了FedSim,这是一种针对个性化FL的新方法,该方法积极利用此类服务​​器数据来改善服务器中的元梯度计算以提高个性化性能。在实验上,我们通过各种基准和消融证明了FEDSIM在准确性方面优于现有方法,通过计算服务器中的完整元梯度,在计算上更有效,并且收敛速度高达34.2%。
translated by 谷歌翻译
联合学习(FL)可以从云到资源限制的边缘设备分发机器学习工作负载。遗憾的是,当前的深网络不仅对边缘设备的推理和培训造成了太重,而且对于在带宽约束网络上传送更新,也太大了。在本文中,我们开发,实施和实验验证了所谓的联合动态稀疏训练(FEDDST)的新型FL框架,通过该训练可以通过该培训和培训复杂的神经网络,在设备上计算和网络内通信中具有基本上提高的效率。在FEDDST的核心是一个动态过程,可以从目标完整网络中提取和列出稀疏子网。通过这个方案,“两只鸟类用一块石头杀死:”而不是完整的模型,每个客户端都会对自己的稀疏网络进行有效的培训,并且在设备和云之间仅传输稀疏网络。此外,我们的结果表明,在流动训练期间的动态稀疏性更灵活地容纳比固定的共用稀疏面具的局部异质性。此外,动态稀疏性自然地引入了培训动态的“时间自化效应”,即使通过密集训练也会提高流程。在一个现实和挑战的非I.I.D。 FL Setting,FEDDST始终如一地优于我们的实验中的竞争算法:例如,在非IID CIFAR-10上的任何固定上传数据帽时,在给定相同的上传数据帽时,它会在FedVGM上获得令人印象深刻的精度优势;即使在上传数据帽2倍,也可以进一步展示FEDDST的疗效,即使FEDAVGM为2X,即使将FEDAVGM提供精度差距也会保持3%。代码可用:https://github.com/bibikar/feddst。
translated by 谷歌翻译
联合学习是一种在不违反隐私限制的情况下对分布式数据集进行统计模型培训统计模型的最新方法。通过共享模型而不是客户和服务器之间的数据来保留数据位置原则。这带来了许多优势,但也带来了新的挑战。在本报告中,我们探讨了这个新的研究领域,并执行了几项实验,以加深我们对这些挑战的理解以及不同的问题设置如何影响最终模型的性能。最后,我们为这些挑战之一提供了一种新颖的方法,并将其与文献中的其他方法进行了比较。
translated by 谷歌翻译
联合学习(FL)框架使Edge客户能够协作学习共享的推理模型,同时保留对客户的培训数据的隐私。最近,已经采取了许多启发式方法来概括集中化的自适应优化方法,例如SGDM,Adam,Adagrad等,以提高收敛性和准确性的联合设置。但是,关于在联合设置中的位置以及如何设计和利用自适应优化方法的理论原理仍然很少。这项工作旨在从普通微分方程(ODE)的动力学的角度开发新的自适应优化方法,以开发FL的新型自适应优化方法。首先,建立了一个分析框架,以在联合优化方法和相应集中优化器的ODES分解之间建立连接。其次,基于这个分析框架,开发了一种动量解耦自适应优化方法FedDA,以充分利用每种本地迭代的全球动量并加速训练收敛。最后但并非最不重要的一点是,在训练过程结束时,全部批处理梯度用于模仿集中式优化,以确保收敛并克服由自适应优化方法引起的可能的不一致。
translated by 谷歌翻译
Federated Learning有望在不访问数据的情况下与多个客户进行协作培训模型的能力,但是当客户的数据分布彼此差异时脆弱。这种差异进一步导致了困境:“我们是否应该优先考虑学习模型的通用性能(用于服务器的将来使用)或其个性化绩效(对于每个客户端)?”这两个看似竞争的目标使社区分裂了专注于一个或另一个,但在本文中,我们表明可以同时实现这两者。具体而言,我们提出了一个新颖的联邦学习框架,该框架将模型的双重职责与两个预测任务相结合。一方面,我们介绍了一个损失家族,这些损失家庭对非相同的班级分布,使客户能够培训一个通用的预测指标,并以一致的目标培训。另一方面,我们将个性化预测变量作为一种轻巧的自适应模块,以最大程度地减少每个客户在通用预测指标上的经验风险。借助我们将联合强大的脱钩(FED-ROD)命名的两个损失的两次挑战框架,学识渊博的模型可以同时实现最先进的通用和个性化的性能,从而实质上弥补了这两个任务。
translated by 谷歌翻译
可扩展性和隐私是交叉设备联合学习(FL)系统的两个关键问题。在这项工作中,我们确定了FL中的客户端更新的同步流动聚合不能高效地缩放到几百个并行培训之外。它导致ModelPerforce和训练速度的回报递减,Ampanysto大批量培训。另一方面,FL(即异步FL)中的客户端更新的异步聚合减轻了可扩展性问题。但是,聚合个性链子更新与安全聚合不兼容,这可能导致系统的不良隐私水平。为了解决这些问题,我们提出了一种新颖的缓冲异步聚合方法FedBuff,这是不可知的优化器的选择,并结合了同步和异步FL的最佳特性。我们经验证明FEDBuff比同步FL更有效,比异步FL效率更高3.3倍,同时兼容保留保护技术,如安全聚合和差异隐私。我们在平滑的非凸设置中提供理论融合保证。最后,我们显示在差异私有培训下,FedBuff可以在低隐私设置下占FEDAVGM并实现更高隐私设置的相同实用程序。
translated by 谷歌翻译
在联合学习(FL)的新兴范式中,大量客户端(例如移动设备)用于在各自的数据上训练可能的高维模型。由于移动设备的带宽低,分散的优化方法需要将计算负担从那些客户端转移到计算服务器,同时保留隐私和合理的通信成本。在本文中,我们专注于深度,如多层神经网络的培训,在FL设置下。我们提供了一种基于本地模型的层状和维度更新的新型联合学习方法,减轻了非凸起和手头优化任务的多层性质的新型联合学习方法。我们为Fed-Lamb提供了一种彻底的有限时间收敛性分析,表征其渐变减少的速度有多速度。我们在IID和非IID设置下提供实验结果,不仅可以证实我们的理论,而且与最先进的方法相比,我们的方法的速度更快。
translated by 谷歌翻译
联合学习(FL)使数据所有者能够在不共享其私人数据的情况下训练共享的全球模型。不幸的是,FL容易受到固有的公平问题的影响:由于客户数据分布的异质性,最终训练的模型可以在参与的客户中给予不成比例的优势。在这项工作中,我们提出了平等且公平的联合学习(E2FL),以同时保留两个主要公平属性,公平性和平等,从而产生公平的联合学习模型。我们验证了E2FL在不同现实世界中的应用程序中的效率和公平性,并表明E2FL在所有个人客户中的效率,不同群体的公平性以及公平性方面优于现有基准。
translated by 谷歌翻译
在这项工作中,我们提出了FedSSO,这是一种用于联合学习的服务器端二阶优化方法(FL)。与以前朝这个方向的工作相反,我们在准牛顿方法中采用了服务器端近似,而无需客户的任何培训数据。通过这种方式,我们不仅将计算负担从客户端转移到服务器,而且还消除了客户和服务器之间二阶更新的附加通信。我们为我们的新方法的收敛提供了理论保证,并从经验上证明了我们在凸面和非凸面设置中的快速收敛和沟通节省。
translated by 谷歌翻译
聚集的联合学习(FL)已显示通过将客户分组为群集,从而产生有希望的结果。这在单独的客户群在其本地数据的分布方面有显着差异的情况下特别有效。现有的集群FL算法实质上是在试图将客户群体组合在一起,以便同一集群中的客户可以利用彼此的数据来更好地执行联合学习。但是,先前的群集FL算法试图在培训期间间接学习这些分布相似性,这可能会很耗时,因为可能需要许多回合的联合学习,直到群集的形成稳定为止。在本文中,我们提出了一种新的联合学习方法,该方法直接旨在通过分析客户数据子空间之间的主要角度来有效地识别客户之间的分布相似性。每个客户端都以单一的方式在其本地数据上应用截断的奇异值分解(SVD)步骤,以得出一小部分主向量,该量提供了一个签名,可简洁地捕获基础分布的主要特征。提供了一组主要的主向量,以便服务器可以直接识别客户端之间的分布相似性以形成簇。这是通过比较这些主要向量跨越的客户数据子空间之间主要角度的相似性来实现的。该方法提供了一个简单而有效的集群FL框架,该框架解决了广泛的数据异质性问题,而不是标签偏斜的更简单的非iids形式。我们的聚类FL方法还可以为非凸目标目标提供融合保证。我们的代码可在https://github.com/mmorafah/pacfl上找到。
translated by 谷歌翻译
传统的联邦优化方法的性能较差(即降低准确性),尤其是对于高度偏斜的数据。在本文中,我们调查了佛罗里达州的标签分布偏斜,在那里标签的分布各不相同。首先,我们从统计视图研究了标签分布偏斜。我们在理论上和经验上都证明了基于软马克斯跨凝结的先前方法不合适,这可能会导致本地模型非常适合少数群体和缺失的类别。此外,我们从理论上引入了一个偏离,以测量本地更新后梯度的偏差。最后,我们建议通过\ textbf {l} ogits \ textbf {c}启动)FedLc(\ textbf {fed {fed}学习,该学习根据每个类别的出现可能性。 FedLC通过添加成对标签的边距将细粒度校准的跨透镜损失应用于本地更新。联合数据集和现实世界数据集的广泛实验表明,联邦快递会导致更准确的全球模型和大大改善的性能。此外,将其他FL方法集成到我们的方法中可以进一步增强全球模型的性能。
translated by 谷歌翻译
在联合学习(FL)中的客户端的异质性通常会在梯度空间中发生客户的知识聚合时阻碍优化融合和泛化性能。例如,客户端可以在数据分发,网络延迟,输入/输出空间和/或模型架构方面不同,这可以很容易地导致其本地梯度的未对准。为了提高异质性的容忍度,我们提出了一种新的联合原型学习(FedProto)框架,其中客户端和服务器传达了抽象类原型而不是梯度。 FEDPROTO聚合从不同客户端收集的本地原型,然后将全局原型发送回所有客户端,以规范本地模型的培训。每个客户端的训练旨在最大限度地减少本地数据上的分类错误,同时保持所产生的本地原型靠近相应的全球范围。此外,我们在非凸起目标下对FedProto的收敛速度提供了理论分析。在实验中,我们提出了一种针对异构FL定制的基准设置,FEDPROTO优于多个数据集上的几种方法。
translated by 谷歌翻译
随着对数据隐私和数据量迅速增加的越来越关注,联邦学习(FL)已成为重要的学习范式。但是,在FL环境中共同学习深层神经网络模型被证明是一项非平凡的任务,因为与神经网络相关的复杂性,例如跨客户的各种体系结构,神经元的置换不变性以及非线性的存在每一层的转换。这项工作介绍了一个新颖的联合异质神经网络(FEDHENN)框架,该框架允许每个客户构建个性化模型,而无需在跨客户范围内实施共同的架构。这使每个客户都可以优化本地数据并计算约束,同时仍能从其他(可能更强大)客户端的学习中受益。 Fedhenn的关键思想是使用从同行客户端获得的实例级表示,以指导每个客户的同时培训。广泛的实验结果表明,Fedhenn框架能够在跨客户的同质和异质体系结构的设置中学习更好地表现客户的模型。
translated by 谷歌翻译
Federated learning is a popular paradigm for machine learning. Ideally, federated learning works best when all clients share a similar data distribution. However, it is not always the case in the real world. Therefore, the topic of federated learning on heterogeneous data has gained more and more effort from both academia and industry. In this project, we first do extensive experiments to show how data skew and quantity skew will affect the performance of state-of-art federated learning algorithms. Then we propose a new algorithm FedMix which adjusts existing federated learning algorithms and we show its performance. We find that existing state-of-art algorithms such as FedProx and FedNova do not have a significant improvement in all testing cases. But by testing the existing and new algorithms, it seems that tweaking the client side is more effective than tweaking the server side.
translated by 谷歌翻译
随着对用户数据隐私的越来越关注,联合学习(FL)已被开发为在边缘设备上训练机器学习模型的独特培训范式,而无需访问敏感数据。传统的FL和现有方法直接在云服务器的同一型号和培训设备的所有边缘上采用聚合方法。尽管这些方法保护了数据隐私,但它们不能具有模型异质性,甚至忽略了异质的计算能力,也可以忽略陡峭的沟通成本。在本文中,我们目的是将资源感知的FL汇总为从边缘模型中提取的本地知识的集合,而不是汇总每个本地模型的权重,然后将其蒸馏成一个强大的全局知识,作为服务器模型通过知识蒸馏。通过深入的相互学习,将本地模型和全球知识提取到很小的知识网络中。这种知识提取使Edge客户端可以部署资源感知模型并执行多模型知识融合,同时保持沟通效率和模型异质性。经验结果表明,在异质数据和模型中的通信成本和概括性能方面,我们的方法比现有的FL算法有了显着改善。我们的方法将VGG-11的沟通成本降低了102美元$ \ times $和Resnet-32,当培训Resnet-20作为知识网络时,最多可达30美元$ \ times $。
translated by 谷歌翻译