随着对用户数据隐私的越来越关注,联合学习(FL)已被开发为在边缘设备上训练机器学习模型的独特培训范式,而无需访问敏感数据。传统的FL和现有方法直接在云服务器的同一型号和培训设备的所有边缘上采用聚合方法。尽管这些方法保护了数据隐私,但它们不能具有模型异质性,甚至忽略了异质的计算能力,也可以忽略陡峭的沟通成本。在本文中,我们目的是将资源感知的FL汇总为从边缘模型中提取的本地知识的集合,而不是汇总每个本地模型的权重,然后将其蒸馏成一个强大的全局知识,作为服务器模型通过知识蒸馏。通过深入的相互学习,将本地模型和全球知识提取到很小的知识网络中。这种知识提取使Edge客户端可以部署资源感知模型并执行多模型知识融合,同时保持沟通效率和模型异质性。经验结果表明,在异质数据和模型中的通信成本和概括性能方面,我们的方法比现有的FL算法有了显着改善。我们的方法将VGG-11的沟通成本降低了102美元$ \ times $和Resnet-32,当培训Resnet-20作为知识网络时,最多可达30美元$ \ times $。
translated by 谷歌翻译
Federated Learning (FL) is extensively used to train AI/ML models in distributed and privacy-preserving settings. Participant edge devices in FL systems typically contain non-independent and identically distributed~(Non-IID) private data and unevenly distributed computational resources. Preserving user data privacy while optimizing AI/ML models in a heterogeneous federated network requires us to address data heterogeneity and system/resource heterogeneity. Hence, we propose \underline{R}esource-\underline{a}ware \underline{F}ederated \underline{L}earning~(RaFL) to address these challenges. RaFL allocates resource-aware models to edge devices using Neural Architecture Search~(NAS) and allows heterogeneous model architecture deployment by knowledge extraction and fusion. Integrating NAS into FL enables on-demand customized model deployment for resource-diverse edge devices. Furthermore, we propose a multi-model architecture fusion scheme allowing the aggregation of the distributed learning results. Results demonstrate RaFL's superior resource efficiency compared to SoTA.
translated by 谷歌翻译
高效联合学习是在边缘设备上培训和部署AI模型的关键挑战之一。然而,在联合学习中维护数据隐私提出了几种挑战,包括数据异质性,昂贵的通信成本和有限的资源。在本文中,我们通过(a)通过基于本地客户端的深度增强学习引入突出参数选择代理的上述问题,并在中央服务器上聚合所选择的突出参数,(b)分割正常的深度学习模型〜 (例如,CNNS)作为共享编码器和本地预测器,并通过联合学习训练共享编码器,同时通过本地自定义预测器将其知识传送到非IID客户端。所提出的方法(a)显着降低了联合学习的通信开销,并加速了模型推断,而方法(b)则在联合学习中解决数据异质性问题。此外,我们利用梯度控制机制来校正客户之间的梯度异质性。这使得训练过程更稳定并更快地收敛。实验表明,我们的方法产生了稳定的训练过程,并与最先进的方法相比实现了显着的结果。在培训VGG-11时,我们的方法明显降低了通信成本最高108 GB,并在培训Reset-20时需要7.6美元的通信开销,同时通过减少高达39.7 \%$ 39.7 \%$ vgg- 11.
translated by 谷歌翻译
将知识蒸馏应用于个性化的跨筒仓联合学习,可以很好地减轻用户异质性的问题。然而,这种方法需要一个代理数据集,这很难在现实世界中获得。此外,基于参数平均的全球模型将导致用户隐私的泄漏。我们介绍了一个分布式的三位玩家GaN来实现客户之间的DataFree共蒸馏。该技术减轻了用户异质性问题,更好地保护用户隐私。我们证实,GaN产生的方法可以使联合蒸馏更有效和稳健,并且在获得全球知识的基础上,共蒸馏可以为各个客户达到良好的性能。我们对基准数据集的广泛实验证明了与最先进的方法的卓越的泛化性能。
translated by 谷歌翻译
近年来,个性化联邦学习(PFL)引起了越来越关注其在客户之间处理统计异质性的潜力。然而,最先进的PFL方法依赖于服务器端的模型参数聚合,这需要所有模型具有相同的结构和大小,因此限制了应用程序以实现更多异构场景。要处理此类模型限制,我们利用异构模型设置的潜力,并提出了一种新颖的培训框架,为不同客户使用个性化模型。具体而言,我们将原始PFL中的聚合过程分为个性化组知识转移训练算法,即KT-PFL,这使得每个客户端能够在服务器端维护个性化软预测以指导其他人的本地培训。 KT-PFL通过使用知识系数矩阵的所有本地软预测的线性组合更新每个客户端的个性化软预测,这可以自适应地加强拥有类似数据分布的客户端之间的协作。此外,为了量化每个客户对他人的个性化培训的贡献,知识系数矩阵是参数化的,以便可以与模型同时培训。知识系数矩阵和模型参数在每轮梯度下降方式之后的每一轮中可替代地更新。在不同的设置(异构模型和数据分布)下进行各种数据集(EMNIST,Fashion \ _Mnist,CIFAR-10)的广泛实验。据证明,所提出的框架是第一个通过参数化群体知识转移实现个性化模型培训的联邦学习范例,同时实现与最先进的算法比较的显着性能增益。
translated by 谷歌翻译
联合学习的一个关键挑战是客户之间的数据异质性和失衡,这导致本地网络与全球模型不稳定的融合之间的不一致。为了减轻局限性,我们提出了一种新颖的建筑正则化技术,该技术通过在几个不同级别上接管本地和全球子网,在每个本地模型中构建多个辅助分支通过在线知识蒸馏。该提出的技术即使在非IID环境中也可以有效地鲁棒化,并且适用于各种联合学习框架,而不会产生额外的沟通成本。与现有方法相比,我们进行了全面的经验研究,并在准确性和效率方面表现出显着的性能提高。源代码可在我们的项目页面上找到。
translated by 谷歌翻译
作为一种有希望的隐私机器学习方法,联合学习(FL)可以使客户跨客户培训,而不会损害其机密的本地数据。但是,现有的FL方法遇到了不均分布数据的推理性能低的问题,因为它们中的大多数依赖于联合平均(FIDAVG)基于联合的聚合。通过以粗略的方式平均模型参数,FedAvg将局部模型的个体特征黯然失色,这极大地限制了FL的推理能力。更糟糕的是,在每一轮FL培训中,FedAvg向客户端向客户派遣了相同的初始本地模型,这很容易导致对最佳全局模型的局限性搜索。为了解决上述问题,本文提出了一种新颖有效的FL范式,名为FEDMR(联合模型重组)。与传统的基于FedAvg的方法不同,FEDMR的云服务器将收集到的本地型号的每一层层混合,并重组它们以实现新的模型,以供客户端培训。由于在每场FL比赛中进行了细粒度的模型重组和本地培训,FEDMR可以迅速为所有客户找出一个全球最佳模型。全面的实验结果表明,与最先进的FL方法相比,FEDMR可以显着提高推理准确性而不会引起额外的通信开销。
translated by 谷歌翻译
Federated Learning (FL) enables the training of Deep Learning models without centrally collecting possibly sensitive raw data. This paves the way for stronger privacy guarantees when building predictive models. The most used algorithms for FL are parameter-averaging based schemes (e.g., Federated Averaging) that, however, have well known limits: (i) Clients must implement the same model architecture; (ii) Transmitting model weights and model updates implies high communication cost, which scales up with the number of model parameters; (iii) In presence of non-IID data distributions, parameter-averaging aggregation schemes perform poorly due to client model drifts. Federated adaptations of regular Knowledge Distillation (KD) can solve and/or mitigate the weaknesses of parameter-averaging FL algorithms while possibly introducing other trade-offs. In this article, we provide a review of KD-based algorithms tailored for specific FL issues.
translated by 谷歌翻译
今天的数据往往散布数十亿资源受限的边缘设备,具有安全性和隐私约束。联合学习(FL)已成为在保持数据私有的同时学习全球模型的可行解决方案,但FL的模型复杂性被边缘节点的计算资源阻碍。在这项工作中,我们调查了一种新的范例来利用强大的服务器模型来突破FL中的模型容量。通过选择性地从多个教师客户和本身学习,服务器模型开发深入的知识,并将其知识传输回客户端,以恢复它们各自的性能。我们所提出的框架在服务器和客户端模型上实现了卓越的性能,并在统一的框架中提供了几个优势,包括异构客户端架构的灵活性,对各种图像分类任务的客户端和服务器之间的通信效率。
translated by 谷歌翻译
在现实世界应用中,联合学习(FL)遇到了两个挑战:(1)可伸缩性,尤其是应用于大型物联网网络时; (2)如何使用异质数据对环境进行健全。意识到第一个问题,我们旨在设计一个名为Full-Stack FL(F2L)的新型FL框架。更具体地说,F2L使用层次结构架构,使扩展FL网络可以访问而无需重建整个网络系统。此外,利用层次网络设计的优势,我们在全球服务器上提出了一种新的标签驱动知识蒸馏(LKD)技术来解决第二个问题。与当前的知识蒸馏技术相反,LKD能够训练学生模型,该模型由所有教师模型的良好知识组成。因此,我们提出的算法可以有效地提取区域数据分布(即区域汇总模型)的知识,以减少客户在使用非独立分布数据的FL系统下操作时客户模型之间的差异。广泛的实验结果表明:(i)我们的F2L方法可以显着提高所有全球蒸馏的总体FL效率,并且(ii)F2L随着全球蒸馏阶段的发生而迅速达到收敛性,而不是在每个通信周期中提高。
translated by 谷歌翻译
联合学习(FL)是以隐私性的方式从分散数据培训全球模型的重要范例。现有的FL方法通常假定可以对任何参与客户端进行培训。但是,在实际应用中,客户的设备通常是异质的,并且具有不同的计算能力。尽管像伯特这样的大型模型在AI中取得了巨大的成功,但很难将它们应用于弱客户的异质FL。直接的解决方案(例如删除弱客户端或使用小型模型适合所有客户端)将带来一些问题,例如由于数据丢失或有限的模型表示能力而导致的掉落客户端的代表性不足和劣等精度。在这项工作中,我们提出了一种包含客户的联合学习方法,以解决此问题。包容性FL的核心思想是将不同尺寸的模型分配给具有不同计算功能的客户,为功能强大的客户提供的较大模型以及针对弱客户的较小客户。我们还提出了一种有效的方法,可以在多个具有不同大小的本地模型之间共享知识。这样,所有客户都可以参与FL中的模型学习,最终模型可以足够大。此外,我们提出了一种动量知识蒸馏方法,以更好地转移强大客户的大型模型中的知识,向弱客户的小型模型。在许多实际基准数据集上进行的广泛实验证明了该方法在FL框架下使用异质设备的客户学习准确模型的有效性。
translated by 谷歌翻译
一滴联合学习(FL)最近被出现为有希望的方法,允许中央服务器在单个通信中学习模型。尽管通信成本低,但现有的一次性的单次方法大多是不切实际或面临的固有限制,例如,需要公共数据集,客户的型号是同质的,需要上传其他数据/型号信息。为了克服这些问题,我们提出了一种更实用的无数据方法,名为FEDSYN的一枪框架,具有异质性。我们的Fedsyn通过数据生成阶段和模型蒸馏阶段列出全球模型。据我们所知,FEDSYN是由于以下优点,FEDSYN可以实际应用于各种实际应用程序的方法:(1)FEDSYN不需要在客户端之间传输的其他信息(模型参数除外)服务器; (2)FEDSYN不需要任何用于培训的辅助数据集; (3)FEDSYN是第一个考虑FL中的模型和统计异质性,即客户的数据是非IID,不同的客户端可能具有不同的模型架构。关于各种现实世界数据集的实验表明了我们的Fedsyn的优越性。例如,当数据是非IID时,FEDSYN在CIFAR10数据集中优于CEFAR10数据集的最佳基线方法FED-ADI的最佳基准方法。
translated by 谷歌翻译
最近联合学习(FL)范式的潜在假设是本地模型通常与全局模型共享与全局模型相同的网络架构,这对于具有不同的硬件和基础架构的移动和IOT设备变得不切实际。可扩展的联合学习框架应该解决配备不同计算和通信功能的异构客户端。为此,本文提出了一种新的联合模型压缩框架,它将异构低级模型分配给客户端,然后将它们聚合到全局全级模型中。我们的解决方案使得能够培训具有不同计算复杂性的异构本地模型,并汇总单个全局模型。此外,FEDHM不仅降低了设备的计算复杂性,而且还通过使用低秩模型来降低通信成本。广泛的实验结果表明,我们提出的\ System在测试顶-1精度(平均精度4.6%的精度增益)方面优于现行修剪的液体方法,在各种异构流域下较小的型号尺寸(平均较小为1.5倍) 。
translated by 谷歌翻译
The heterogeneity of hardware and data is a well-known and studied problem in the community of Federated Learning (FL) as running under heterogeneous settings. Recently, custom-size client models trained with Knowledge Distillation (KD) has emerged as a viable strategy for tackling the heterogeneity challenge. However, previous efforts in this direction are aimed at client model tuning rather than their impact onto the knowledge aggregation of the global model. Despite performance of global models being the primary objective of FL systems, under heterogeneous settings client models have received more attention. Here, we provide more insights into how the chosen approach for training custom client models has an impact on the global model, which is essential for any FL application. We show the global model can fully leverage the strength of KD with heterogeneous data. Driven by empirical observations, we further propose a new approach that combines KD and Learning without Forgetting (LwoF) to produce improved personalised models. We bring heterogeneous FL on pair with the mighty FedAvg of homogeneous FL, in realistic deployment scenarios with dropping clients.
translated by 谷歌翻译
一方(服务器)培训的检测模型可能会在分发给其他用户(客户)时面临严重的性能降解。例如,在自主驾驶场景中,不同的驾驶环境可能会带来明显的域移动,从而导致模型预测的偏见。近年来出现的联合学习可以使多方合作培训无需泄漏客户数据。在本文中,我们专注于特殊的跨域场景,其中服务器包含大规模数据,并且多个客户端仅包含少量数据。同时,客户之间的数据分布存在差异。在这种情况下,传统的联合学习技术不能考虑到所有参与者的全球知识和特定客户的个性化知识的学习。为了弥补这一限制,我们提出了一个跨域联合对象检测框架,名为FedOD。为了同时学习不同领域的全球知识和个性化知识,拟议的框架首先执行联合培训,以通过多教老师蒸馏获得公共全球汇总模型,并将汇总模型发送给每个客户端以供应其个性化的个性化模型本地模型。经过几轮沟通后,在每个客户端,我们可以对公共全球模型和个性化本地模型进行加权合奏推理。通过合奏,客户端模型的概括性能可以胜过具有相同参数量表的单个模型。我们建立了一个联合对象检测数据集,该数据集具有基于多个公共自主驾驶数据集的显着背景差异和实例差异,然后在数据集上进行大量实验。实验结果验证了所提出的方法的有效性。
translated by 谷歌翻译
我们介绍了一个新颖的联合学习框架FedD3,该框架减少了整体沟通量,并开放了联合学习的概念,从而在网络受限的环境中进行了更多的应用程序场景。它通过利用本地数据集蒸馏而不是传统的学习方法(i)大大减少沟通量,并(ii)将转移限制为一击通信,而不是迭代的多路交流来实现这一目标。 FedD3允许连接的客户独立提炼本地数据集,然后汇总那些去中心化的蒸馏数据集(通常以几个无法识别的图像,通常小于模型小于模型),而不是像其他联合学习方法共享模型更新,而是允许连接的客户独立提炼本地数据集。在整个网络上仅一次形成最终模型。我们的实验结果表明,FedD3在所需的沟通量方面显着优于其他联合学习框架,同时,根据使用情况或目标数据集,它为能够在准确性和沟通成本之间的权衡平衡。例如,要在具有10个客户的非IID CIFAR-10数据集上训练Alexnet模型,FedD3可以通过相似的通信量增加准确性超过71%,或者节省98%的通信量,同时达到相同的准确性与其他联合学习方法相比。
translated by 谷歌翻译
A key challenge in federated learning (FL) is the statistical heterogeneity that impairs the generalization of the global model on each client. To address this, we propose a method Federated learning with Adaptive Local Aggregation (FedALA) by capturing the desired information in the global model for client models in personalized FL. The key component of FedALA is an Adaptive Local Aggregation (ALA) module, which can adaptively aggregate the downloaded global model and local model towards the local objective on each client to initialize the local model before training in each iteration. To evaluate the effectiveness of FedALA, we conduct extensive experiments with five benchmark datasets in computer vision and natural language processing domains. FedALA outperforms eleven state-of-the-art baselines by up to 3.27% in test accuracy. Furthermore, we also apply ALA module to other federated learning methods and achieve up to 24.19% improvement in test accuracy.
translated by 谷歌翻译
联合学习(FL)是一种新兴技术,用于协作训练全球机器学习模型,同时将数据局限于用户设备。FL实施实施的主要障碍是用户之间的非独立且相同的(非IID)数据分布,这会减慢收敛性和降低性能。为了解决这个基本问题,我们提出了一种方法(comfed),以增强客户端和服务器侧的整个培训过程。舒适的关键思想是同时利用客户端变量减少技术来促进服务器聚合和全局自适应更新技术以加速学习。我们在CIFAR-10分类任务上的实验表明,Comfed可以改善专用于非IID数据的最新算法。
translated by 谷歌翻译
个性化联合学习(FL)是佛罗里达州的一个新兴研究领域,在客户之间存在数据异质性的情况下,可以学习一个易于适应的全球模型。但是,个性化FL的主要挑战之一是,由于客户数据与服务器隔离以确保隐私,因此非常依赖客户的计算资源来计算高阶梯度。为了解决这个问题,我们专注于服务器可以独立于客户数据独立于客户数据的问题设置,这是各种应用程序中普遍的问题设置,但在现有文献中相对尚未探索。具体而言,我们提出了FedSim,这是一种针对个性化FL的新方法,该方法积极利用此类服务​​器数据来改善服务器中的元梯度计算以提高个性化性能。在实验上,我们通过各种基准和消融证明了FEDSIM在准确性方面优于现有方法,通过计算服务器中的完整元梯度,在计算上更有效,并且收敛速度高达34.2%。
translated by 谷歌翻译
联合学习(FL)可以从云到资源限制的边缘设备分发机器学习工作负载。遗憾的是,当前的深网络不仅对边缘设备的推理和培训造成了太重,而且对于在带宽约束网络上传送更新,也太大了。在本文中,我们开发,实施和实验验证了所谓的联合动态稀疏训练(FEDDST)的新型FL框架,通过该训练可以通过该培训和培训复杂的神经网络,在设备上计算和网络内通信中具有基本上提高的效率。在FEDDST的核心是一个动态过程,可以从目标完整网络中提取和列出稀疏子网。通过这个方案,“两只鸟类用一块石头杀死:”而不是完整的模型,每个客户端都会对自己的稀疏网络进行有效的培训,并且在设备和云之间仅传输稀疏网络。此外,我们的结果表明,在流动训练期间的动态稀疏性更灵活地容纳比固定的共用稀疏面具的局部异质性。此外,动态稀疏性自然地引入了培训动态的“时间自化效应”,即使通过密集训练也会提高流程。在一个现实和挑战的非I.I.D。 FL Setting,FEDDST始终如一地优于我们的实验中的竞争算法:例如,在非IID CIFAR-10上的任何固定上传数据帽时,在给定相同的上传数据帽时,它会在FedVGM上获得令人印象深刻的精度优势;即使在上传数据帽2倍,也可以进一步展示FEDDST的疗效,即使FEDAVGM为2X,即使将FEDAVGM提供精度差距也会保持3%。代码可用:https://github.com/bibikar/feddst。
translated by 谷歌翻译