在这项工作中,我们提出了FedSSO,这是一种用于联合学习的服务器端二阶优化方法(FL)。与以前朝这个方向的工作相反,我们在准牛顿方法中采用了服务器端近似,而无需客户的任何培训数据。通过这种方式,我们不仅将计算负担从客户端转移到服务器,而且还消除了客户和服务器之间二阶更新的附加通信。我们为我们的新方法的收敛提供了理论保证,并从经验上证明了我们在凸面和非凸面设置中的快速收敛和沟通节省。
translated by 谷歌翻译
数据异构联合学习(FL)系统遭受了两个重要的收敛误差来源:1)客户漂移错误是由于在客户端执行多个局部优化步骤而引起的,以及2)部分客户参与错误,这是一个事实,仅一小部分子集边缘客户参加每轮培训。我们发现其中,只有前者在文献中受到了极大的关注。为了解决这个问题,我们提出了FedVarp,这是在服务器上应用的一种新颖的差异算法,它消除了由于部分客户参与而导致的错误。为此,服务器只是将每个客户端的最新更新保持在内存中,并将其用作每回合中非参与客户的替代更新。此外,为了减轻服务器上的内存需求,我们提出了一种新颖的基于聚类的方差降低算法clusterfedvarp。与以前提出的方法不同,FedVarp和ClusterFedVarp均不需要在客户端上进行其他计算或其他优化参数的通信。通过广泛的实验,我们表明FedVarp优于最先进的方法,而ClusterFedVarp实现了与FedVarp相当的性能,并且记忆要求较少。
translated by 谷歌翻译
牛顿型方法由于其快速收敛而在联合学习中很受欢迎。尽管如此,由于要求将Hessian信息从客户发送到参数服务器(PS),因此他们遭受了两个主要问题:沟通效率低下和较低的隐私性。在这项工作中,我们介绍了一个名为Fednew的新颖框架,其中无需将Hessian信息从客户传输到PS,因此解决了瓶颈以提高沟通效率。此外,与现有的最新技术相比,Fednew隐藏了梯度信息,并导致具有隐私的方法。 Fednew中的核心小说想法是引入两个级别的框架,并在仅使用一种交替的乘数方法(ADMM)步骤更新逆Hessian级别产品之间,然后使用Newton的方法执行全局模型更新。尽管在每次迭代中只使用一个ADMM通行证来近似逆Hessian梯度产品,但我们开发了一种新型的理论方法来显示Fednew在凸问题上的融合行为。此外,通过利用随机量化,可以显着减少通信开销。使用真实数据集的数值结果显示了与现有方法相比,在通信成本方面,Fednew的优越性。
translated by 谷歌翻译
我们提出了一个新颖的框架,以研究异步联合学习优化,并在梯度更新中延迟。我们的理论框架通过引入随机聚合权重来表示客户更新时间的可变性,从而扩展了标准的FedAvg聚合方案,例如异质硬件功能。我们的形式主义适用于客户具有异质数据集并至少执行随机梯度下降(SGD)的一步。我们证明了这种方案的收敛性,并为相关最小值提供了足够的条件,使其成为联邦问题的最佳选择。我们表明,我们的一般框架适用于现有的优化方案,包括集中学习,FedAvg,异步FedAvg和FedBuff。这里提供的理论允许绘制有意义的指南,以设计在异质条件下的联合学习实验。特别是,我们在这项工作中开发了FedFix,这是FedAvg的新型扩展,从而实现了有效的异步联合训练,同时保留了同步聚合的收敛稳定性。我们在一系列实验上凭经验证明了我们的理论,表明异步FedAvg以稳定性为代价导致快速收敛,我们最终证明了FedFix比同步和异步FedAvg的改善。
translated by 谷歌翻译
联合学习(FL)是一个分布式的机器学习框架,可以减轻数据孤岛,在该筒仓中,分散的客户在不共享其私人数据的情况下协作学习全球模型。但是,客户的非独立且相同分布的(非IID)数据对训练有素的模型产生了负面影响,并且具有不同本地更新的客户可能会在每个通信回合中对本地梯度造成巨大差距。在本文中,我们提出了一种联合矢量平均(FedVeca)方法来解决上述非IID数据问题。具体而言,我们为与本地梯度相关的全球模型设定了一个新的目标。局部梯度定义为具有步长和方向的双向向量,其中步长为局部更新的数量,并且根据我们的定义将方向分为正和负。在FedVeca中,方向受步尺的影响,因此我们平均双向向量,以降低不同步骤尺寸的效果。然后,我们理论上分析了步骤大小与全球目标之间的关系,并在每个通信循环的步骤大小上获得上限。基于上限,我们为服务器和客户端设计了一种算法,以自适应调整使目标接近最佳的步骤大小。最后,我们通过构建原型系统对不同数据集,模型和场景进行实验,实验结果证明了FedVeca方法的有效性和效率。
translated by 谷歌翻译
In federated optimization, heterogeneity in the clients' local datasets and computation speeds results in large variations in the number of local updates performed by each client in each communication round. Naive weighted aggregation of such models causes objective inconsistency, that is, the global model converges to a stationary point of a mismatched objective function which can be arbitrarily different from the true objective. This paper provides a general framework to analyze the convergence of federated heterogeneous optimization algorithms. It subsumes previously proposed methods such as FedAvg and FedProx and provides the first principled understanding of the solution bias and the convergence slowdown due to objective inconsistency. Using insights from this analysis, we propose Fed-Nova, a normalized averaging method that eliminates objective inconsistency while preserving fast error convergence.
translated by 谷歌翻译
联合学习(FL)算法通常在每个圆数(部分参与)大并且服务器的通信带宽有限时对每个轮子(部分参与)进行分数。近期对FL的收敛分析的作品专注于无偏见的客户采样,例如,随机均匀地采样,由于高度的系统异质性和统计异质性而均匀地采样。本文旨在设计一种自适应客户采样算法,可以解决系统和统计异质性,以最小化壁时钟收敛时间。我们获得了具有任意客户端采样概率的流动算法的新的遗传融合。基于界限,我们分析了建立了总学习时间和采样概率之间的关系,这导致了用于训练时间最小化的非凸优化问题。我们设计一种高效的算法来学习收敛绑定中未知参数,并开发低复杂性算法以大致解决非凸面问题。硬件原型和仿真的实验结果表明,与几个基线采样方案相比,我们所提出的采样方案显着降低了收敛时间。值得注意的是,我们的硬件原型的方案比均匀的采样基线花费73%,以达到相同的目标损失。
translated by 谷歌翻译
Federated Learning是一种机器学习培训范式,它使客户能够共同培训模型而无需共享自己的本地化数据。但是,实践中联合学习的实施仍然面临许多挑战,例如由于重复的服务器 - 客户同步以及基于SGD的模型更新缺乏适应性,大型通信开销。尽管已经提出了各种方法来通过梯度压缩或量化来降低通信成本,并且提出了联合版本的自适应优化器(例如FedAdam)来增加适应性,目前的联合学习框架仍然无法立即解决上述挑战。在本文中,我们提出了一种具有理论融合保证的新型沟通自适应联合学习方法(FedCAMS)。我们表明,在非convex随机优化设置中,我们提出的fedcams的收敛率与$ o(\ frac {1} {\ sqrt {tkm}})$与其非压缩的对应物相同。各种基准的广泛实验验证了我们的理论分析。
translated by 谷歌翻译
联合学习(FL)是一种新兴学习范例,可以通过确保边缘设备上的客户端数据局部性来保护隐私。由于学习系统的多样性和异质性,FL的优化在实践中具有挑战性。尽管最近的研究努力改善异构数据的优化,但时间不断变化的异构数据在现实世界方案中的影响,例如改变客户数据或在训练期间留下或离开的间歇性客户,并未得到很好地研究。在这项工作中,我们提出了持续的联邦学习(CFL),灵活的框架,以捕获FL的时间不正常性。 CFL涵盖复杂和现实的情景 - 在之前的流派中评估了挑战 - 通过提取过去的本地数据集的信息并近似当地目标函数。从理论上讲,我们证明CFL方法在时间不断发展的场景中实现了比\ FEDAVG更快的会聚率,其中益处依赖于近似质量。在一系列实验中,我们表明数值调查结果与收敛分析相匹配,CFL方法显着优于其他SOTA FL基线。
translated by 谷歌翻译
在联合学习(FL)的新兴范式中,大量客户端(例如移动设备)用于在各自的数据上训练可能的高维模型。由于移动设备的带宽低,分散的优化方法需要将计算负担从那些客户端转移到计算服务器,同时保留隐私和合理的通信成本。在本文中,我们专注于深度,如多层神经网络的培训,在FL设置下。我们提供了一种基于本地模型的层状和维度更新的新型联合学习方法,减轻了非凸起和手头优化任务的多层性质的新型联合学习方法。我们为Fed-Lamb提供了一种彻底的有限时间收敛性分析,表征其渐变减少的速度有多速度。我们在IID和非IID设置下提供实验结果,不仅可以证实我们的理论,而且与最先进的方法相比,我们的方法的速度更快。
translated by 谷歌翻译
标准联合优化方法成功地适用于单层结构的随机问题。然而,许多当代的ML问题 - 包括对抗性鲁棒性,超参数调整和参与者 - 批判性 - 属于嵌套的双层编程,这些编程包含微型型和组成优化。在这项工作中,我们提出了\ fedblo:一种联合交替的随机梯度方法来解决一般的嵌套问题。我们在存在异质数据的情况下为\ fedblo建立了可证明的收敛速率,并引入了二聚体,最小值和组成优化的变化。\ fedblo引入了多种创新,包括联邦高级计算和降低方差,以解决内部级别的异质性。我们通过有关超参数\&超代理学习和最小值优化的实验来补充我们的理论,以证明我们方法在实践中的好处。代码可在https://github.com/ucr-optml/fednest上找到。
translated by 谷歌翻译
联合学习(FL)是在分布式的数据上进行的有希望的隐私机器学习范式。在FL中,每个用户在本地保存数据。这样可以保护用户隐私,但也使服务器难以验证数据质量,尤其是在正确标记数据的情况下。用损坏的标签培训对联邦学习任务有害;但是,在标签噪声的情况下,很少关注FL。在本文中,我们专注于这个问题,并提出一种基于学习的重新加权方法,以减轻FL中嘈杂标签的效果。更确切地说,我们为每个训练样本调整了一个重量,以使学习模型在验证集上具有最佳的概括性能。更正式的是,该过程可以作为联合双层优化问题进行配合。二重优化问题是一种优化问题,具有两个纠缠问题的级别。非分布的二聚体问题最近通过新的有效算法见证了显着的进展。但是,解决联合学习设置下的二杆优化问题的研究不足。我们确定高级评估中的高沟通成本是主要的瓶颈。因此,我们建议\ textit {comm-fedbio}解决一般联合的双杆优化问题;更具体地说,我们提出了两个沟通效率的子例程,以估计高级别。还提供了所提出算法的收敛分析。最后,我们应用提出的算法来解决嘈杂的标签问题。与各种基线相比,我们的方法在几个现实世界数据集上表现出了出色的性能。
translated by 谷歌翻译
联合学习(FL)是一个新的分布式机器学习框架,可以在不收集用户的私人数据的情况下获得可靠的协作培训。但是,由于FL的频繁沟通和平均聚合策略,他们会遇到挑战统计多样性数据和大规模模型。在本文中,我们提出了一个个性化的FL框架,称为基于Tensor分解的个性化联合学习(TDPFED),在该框架中,我们设计了一种具有张力的线性层和卷积层的新颖的张力局部模型,以降低交流成本。 TDPFED使用双级损失函数来通过控制个性化模型和张力的本地模型之间的差距来使全球模型学习的个性化模型优化。此外,有效的分布式学习策略和两种不同的模型聚合策略是为拟议的TDPFED框架设计的。理论融合分析和彻底的实验表明,我们提出的TDPFED框架在降低交流成本的同时实现了最新的性能。
translated by 谷歌翻译
Federated learning (FL) is a decentralized and privacy-preserving machine learning technique in which a group of clients collaborate with a server to learn a global model without sharing clients' data. One challenge associated with FL is statistical diversity among clients, which restricts the global model from delivering good performance on each client's task. To address this, we propose an algorithm for personalized FL (pFedMe) using Moreau envelopes as clients' regularized loss functions, which help decouple personalized model optimization from the global model learning in a bi-level problem stylized for personalized FL. Theoretically, we show that pFedMe's convergence rate is state-of-the-art: achieving quadratic speedup for strongly convex and sublinear speedup of order 2/3 for smooth nonconvex objectives. Experimentally, we verify that pFedMe excels at empirical performance compared with the vanilla FedAvg and Per-FedAvg, a meta-learning based personalized FL algorithm.
translated by 谷歌翻译
Data heterogeneity across clients is a key challenge in federated learning. Prior works address this by either aligning client and server models or using control variates to correct client model drift. Although these methods achieve fast convergence in convex or simple non-convex problems, the performance in over-parameterized models such as deep neural networks is lacking. In this paper, we first revisit the widely used FedAvg algorithm in a deep neural network to understand how data heterogeneity influences the gradient updates across the neural network layers. We observe that while the feature extraction layers are learned efficiently by FedAvg, the substantial diversity of the final classification layers across clients impedes the performance. Motivated by this, we propose to correct model drift by variance reduction only on the final layers. We demonstrate that this significantly outperforms existing benchmarks at a similar or lower communication cost. We furthermore provide proof for the convergence rate of our algorithm.
translated by 谷歌翻译
As a novel distributed learning paradigm, federated learning (FL) faces serious challenges in dealing with massive clients with heterogeneous data distribution and computation and communication resources. Various client-variance-reduction schemes and client sampling strategies have been respectively introduced to improve the robustness of FL. Among others, primal-dual algorithms such as the alternating direction of method multipliers (ADMM) have been found being resilient to data distribution and outperform most of the primal-only FL algorithms. However, the reason behind remains a mystery still. In this paper, we firstly reveal the fact that the federated ADMM is essentially a client-variance-reduced algorithm. While this explains the inherent robustness of federated ADMM, the vanilla version of it lacks the ability to be adaptive to the degree of client heterogeneity. Besides, the global model at the server under client sampling is biased which slows down the practical convergence. To go beyond ADMM, we propose a novel primal-dual FL algorithm, termed FedVRA, that allows one to adaptively control the variance-reduction level and biasness of the global model. In addition, FedVRA unifies several representative FL algorithms in the sense that they are either special instances of FedVRA or are close to it. Extensions of FedVRA to semi/un-supervised learning are also presented. Experiments based on (semi-)supervised image classification tasks demonstrate superiority of FedVRA over the existing schemes in learning scenarios with massive heterogeneous clients and client sampling.
translated by 谷歌翻译
联合学习(FL)是一种在不获取客户私有数据的情况下培训全球模型的协同机器学习技术。 FL的主要挑战是客户之间的统计多样性,客户设备之间的计算能力有限,以及服务器和客户之间的过度沟通开销。为解决这些挑战,我们提出了一种通过最大化FEDMAC的相关性稀疏个性化联合学习计划。通过将近似的L1-norm和客户端模型与全局模型之间的相关性结合到标准流失函数中,提高了统计分集数据的性能,并且与非稀疏FL相比,网络所需的通信和计算负载减少。收敛分析表明,FEDMAC中的稀疏约束不会影响全球模型的收敛速度,理论结果表明,FEDMAC可以实现良好的稀疏个性化,这比基于L2-NOM的个性化方法更好。实验,我们展示了与最先进的个性化方法相比的这种稀疏个性化建筑的益处(例如,FEDMAC分别达到98.95%,99.37%,99.37%,99.37%,99.37%,99.37%,99.37%,99.37%,99.37%,99.37%,99.37%,99.37%,高精度,FMNIST,CIFAR-100和非IID变体下的合成数据集)。
translated by 谷歌翻译
在最近的联邦学习研究中,使用大批量提高了收敛率,但是与使用小批量相比,它需要额外的计算开销。为了克服这一限制,我们提出了一个统一的框架,该框架基于时间变化的概率将参与者分为锚和矿工组。锚点组中的每个客户都使用大批量计算梯度,该梯度被视为其靶心。矿工组中的客户使用串行迷你批次执行多个本地更新,并且每个本地更新也受到客户平均值Bullseyes的平均值的全局目标的间接调节。结果,矿工组遵循了对全球最小化器的近乎最佳更新,该更新适合更新全局模型。通过$ \ epsilon $ - Approximation衡量,FedAmd通过以恒定概率对锚点进行采样锚点,在非convex目标下达到了$ o(1/\ epsilon)$的收敛速率。理论上的结果大大超过了最先进的算法BVR-l-SGD $ O(1/\ Epsilon^{3/2})$,而FedAmd至少减少了$ O(1/\ Epsilon)$沟通开销。关于现实世界数据集的实证研究验证了FedAmd的有效性,并证明了我们提出的算法的优势。
translated by 谷歌翻译
在最新的联合学习研究(FL)的研究中,广泛采用了客户选择方案来处理沟通效率的问题。但是,从随机选择的非代表性子集汇总的模型更新的较大差异直接减慢了FL收敛性。我们提出了一种新型的基于聚类的客户选择方案,以通过降低方差加速FL收敛。简单而有效的方案旨在改善聚类效果并控制效果波动,因此,以采样的一定代表性生成客户子集。从理论上讲,我们证明了降低方差方案的改进。由于差异的差异,我们还提供了提出方法的更严格的收敛保证。实验结果证实了与替代方案相比,我们计划的效率超出了效率。
translated by 谷歌翻译
在联合学习(FL)中的客户端的异质性通常会在梯度空间中发生客户的知识聚合时阻碍优化融合和泛化性能。例如,客户端可以在数据分发,网络延迟,输入/输出空间和/或模型架构方面不同,这可以很容易地导致其本地梯度的未对准。为了提高异质性的容忍度,我们提出了一种新的联合原型学习(FedProto)框架,其中客户端和服务器传达了抽象类原型而不是梯度。 FEDPROTO聚合从不同客户端收集的本地原型,然后将全局原型发送回所有客户端,以规范本地模型的培训。每个客户端的训练旨在最大限度地减少本地数据上的分类错误,同时保持所产生的本地原型靠近相应的全球范围。此外,我们在非凸起目标下对FedProto的收敛速度提供了理论分析。在实验中,我们提出了一种针对异构FL定制的基准设置,FEDPROTO优于多个数据集上的几种方法。
translated by 谷歌翻译