In federated optimization, heterogeneity in the clients' local datasets and computation speeds results in large variations in the number of local updates performed by each client in each communication round. Naive weighted aggregation of such models causes objective inconsistency, that is, the global model converges to a stationary point of a mismatched objective function which can be arbitrarily different from the true objective. This paper provides a general framework to analyze the convergence of federated heterogeneous optimization algorithms. It subsumes previously proposed methods such as FedAvg and FedProx and provides the first principled understanding of the solution bias and the convergence slowdown due to objective inconsistency. Using insights from this analysis, we propose Fed-Nova, a normalized averaging method that eliminates objective inconsistency while preserving fast error convergence.
translated by 谷歌翻译
现有理论预测,数据异质性将降低联邦平均(FedAvg)算法在联合学习中的性能。但是,实际上,简单的FedAvg算法的收敛良好。本文解释了与以前的理论预测相矛盾的FedAvg的看似不合理的有效性。我们发现,在以前的理论分析中,有界梯度差异的关键假设太悲观了,无法表征实际应用中的数据异质性。对于一个简单的二次问题,我们证明存在很大的梯度差异对FedAvg的收敛性没有任何负面影响。在这一观察结果的推动下,我们提出了一个新的数量,最佳的平均漂移,以衡量数据异质性的效果,并明确使用它来提出对FedAvg的新理论分析。我们表明,在许多实际联合训练任务中,最佳的平均漂移几乎为零,而梯度差异可能很大。我们的新分析表明,FedAvg可以在均质和异质数据设置中具有相同的收敛速率,因此可以更好地理解其经验成功。
translated by 谷歌翻译
从经验上证明,在跨客户聚集之前应用多个本地更新的实践是克服联合学习(FL)中的通信瓶颈的成功方法。在这项工作中,我们提出了一种通用食谱,即FedShuffle,可以更好地利用FL中的本地更新,尤其是在异质性方面。与许多先前的作品不同,FedShuffle在每个设备的更新数量上没有任何统一性。我们的FedShuffle食谱包括四种简单的功能成分:1)数据的本地改组,2)调整本地学习率,3)更新加权,4)减少动量方差(Cutkosky and Orabona,2019年)。我们对FedShuffle进行了全面的理论分析,并表明从理论和经验上讲,我们的方法都不遭受FL方法中存在的目标功能不匹配的障碍,这些方法假设在异质FL设置中,例如FedAvg(McMahan等人,McMahan等, 2017)。此外,通过将上面的成分结合起来,FedShuffle在Fednova上改善(Wang等,2020),以前提议解决此不匹配。我们还表明,在Hessian相似性假设下,通过降低动量方差的FedShuffle可以改善非本地方法。最后,通过对合成和现实世界数据集的实验,我们说明了FedShuffle中使用的四种成分中的每种如何有助于改善FL中局部更新的使用。
translated by 谷歌翻译
联合学习(FL)是一种新兴技术,用于协作训练全球机器学习模型,同时将数据局限于用户设备。FL实施实施的主要障碍是用户之间的非独立且相同的(非IID)数据分布,这会减慢收敛性和降低性能。为了解决这个基本问题,我们提出了一种方法(comfed),以增强客户端和服务器侧的整个培训过程。舒适的关键思想是同时利用客户端变量减少技术来促进服务器聚合和全局自适应更新技术以加速学习。我们在CIFAR-10分类任务上的实验表明,Comfed可以改善专用于非IID数据的最新算法。
translated by 谷歌翻译
我们提出了一个新颖的框架,以研究异步联合学习优化,并在梯度更新中延迟。我们的理论框架通过引入随机聚合权重来表示客户更新时间的可变性,从而扩展了标准的FedAvg聚合方案,例如异质硬件功能。我们的形式主义适用于客户具有异质数据集并至少执行随机梯度下降(SGD)的一步。我们证明了这种方案的收敛性,并为相关最小值提供了足够的条件,使其成为联邦问题的最佳选择。我们表明,我们的一般框架适用于现有的优化方案,包括集中学习,FedAvg,异步FedAvg和FedBuff。这里提供的理论允许绘制有意义的指南,以设计在异质条件下的联合学习实验。特别是,我们在这项工作中开发了FedFix,这是FedAvg的新型扩展,从而实现了有效的异步联合训练,同时保留了同步聚合的收敛稳定性。我们在一系列实验上凭经验证明了我们的理论,表明异步FedAvg以稳定性为代价导致快速收敛,我们最终证明了FedFix比同步和异步FedAvg的改善。
translated by 谷歌翻译
Data heterogeneity across clients is a key challenge in federated learning. Prior works address this by either aligning client and server models or using control variates to correct client model drift. Although these methods achieve fast convergence in convex or simple non-convex problems, the performance in over-parameterized models such as deep neural networks is lacking. In this paper, we first revisit the widely used FedAvg algorithm in a deep neural network to understand how data heterogeneity influences the gradient updates across the neural network layers. We observe that while the feature extraction layers are learned efficiently by FedAvg, the substantial diversity of the final classification layers across clients impedes the performance. Motivated by this, we propose to correct model drift by variance reduction only on the final layers. We demonstrate that this significantly outperforms existing benchmarks at a similar or lower communication cost. We furthermore provide proof for the convergence rate of our algorithm.
translated by 谷歌翻译
数据异构联合学习(FL)系统遭受了两个重要的收敛误差来源:1)客户漂移错误是由于在客户端执行多个局部优化步骤而引起的,以及2)部分客户参与错误,这是一个事实,仅一小部分子集边缘客户参加每轮培训。我们发现其中,只有前者在文献中受到了极大的关注。为了解决这个问题,我们提出了FedVarp,这是在服务器上应用的一种新颖的差异算法,它消除了由于部分客户参与而导致的错误。为此,服务器只是将每个客户端的最新更新保持在内存中,并将其用作每回合中非参与客户的替代更新。此外,为了减轻服务器上的内存需求,我们提出了一种新颖的基于聚类的方差降低算法clusterfedvarp。与以前提出的方法不同,FedVarp和ClusterFedVarp均不需要在客户端上进行其他计算或其他优化参数的通信。通过广泛的实验,我们表明FedVarp优于最先进的方法,而ClusterFedVarp实现了与FedVarp相当的性能,并且记忆要求较少。
translated by 谷歌翻译
Federated Averaging (FEDAVG) has emerged as the algorithm of choice for federated learning due to its simplicity and low communication cost. However, in spite of recent research efforts, its performance is not fully understood. We obtain tight convergence rates for FEDAVG and prove that it suffers from 'client-drift' when the data is heterogeneous (non-iid), resulting in unstable and slow convergence.As a solution, we propose a new algorithm (SCAFFOLD) which uses control variates (variance reduction) to correct for the 'client-drift' in its local updates. We prove that SCAFFOLD requires significantly fewer communication rounds and is not affected by data heterogeneity or client sampling. Further, we show that (for quadratics) SCAFFOLD can take advantage of similarity in the client's data yielding even faster convergence. The latter is the first result to quantify the usefulness of local-steps in distributed optimization.
translated by 谷歌翻译
As a novel distributed learning paradigm, federated learning (FL) faces serious challenges in dealing with massive clients with heterogeneous data distribution and computation and communication resources. Various client-variance-reduction schemes and client sampling strategies have been respectively introduced to improve the robustness of FL. Among others, primal-dual algorithms such as the alternating direction of method multipliers (ADMM) have been found being resilient to data distribution and outperform most of the primal-only FL algorithms. However, the reason behind remains a mystery still. In this paper, we firstly reveal the fact that the federated ADMM is essentially a client-variance-reduced algorithm. While this explains the inherent robustness of federated ADMM, the vanilla version of it lacks the ability to be adaptive to the degree of client heterogeneity. Besides, the global model at the server under client sampling is biased which slows down the practical convergence. To go beyond ADMM, we propose a novel primal-dual FL algorithm, termed FedVRA, that allows one to adaptively control the variance-reduction level and biasness of the global model. In addition, FedVRA unifies several representative FL algorithms in the sense that they are either special instances of FedVRA or are close to it. Extensions of FedVRA to semi/un-supervised learning are also presented. Experiments based on (semi-)supervised image classification tasks demonstrate superiority of FedVRA over the existing schemes in learning scenarios with massive heterogeneous clients and client sampling.
translated by 谷歌翻译
Federated learning is a distributed machine learning paradigm in which a large number of clients coordinate with a central server to learn a model without sharing their own training data. Standard federated optimization methods such as Federated Averaging (FEDAVG) are often difficult to tune and exhibit unfavorable convergence behavior. In non-federated settings, adaptive optimization methods have had notable success in combating such issues. In this work, we propose federated versions of adaptive optimizers, including ADAGRAD, ADAM, and YOGI, and analyze their convergence in the presence of heterogeneous data for general nonconvex settings. Our results highlight the interplay between client heterogeneity and communication efficiency. We also perform extensive experiments on these methods and show that the use of adaptive optimizers can significantly improve the performance of federated learning.
translated by 谷歌翻译
虽然客户的采样是当前最先进的联邦学习(FL)方法的核心运营,但该程序对迄今为止的迄今为止迄今为止的收敛和速度的影响。在这项工作中,我们为FL的收敛介绍了一种新颖的分解定理,允许清楚地量化客户对全局模型更新的影响。与之前的收敛分析相反,我们的定理提供了给定的收敛步骤的精确分解,从而能够准确考虑客户端采样和异质性的作用。首先,我们为先前报告的结果提供了一种理论基础,从收敛性与聚集权重之间的关系之间的关系。其次,我们首次证明了FL收敛的质量也受到聚集重量之间产生的协方差的影响。第三,我们建立了聚集权重的总和是另一个减速的来源,应该等于1来提高流动速度。我们的理论是一般性的,这里申请了多项分布(MD)和统一采样,在FL中的两个默认客户端采样,并通过一系列非IID和不平衡情景进行了演示。我们的结果表明,MD采样应用作默认采样方案,因为在学习过程中的数据比变化的恢复,而统一的采样仅在客户端具有相同数量的数据时才是优越的。
translated by 谷歌翻译
Federated Learning is a distributed learning paradigm with two key challenges that differentiate it from traditional distributed optimization: (1) significant variability in terms of the systems characteristics on each device in the network (systems heterogeneity), and (2) non-identically distributed data across the network (statistical heterogeneity). In this work, we introduce a framework, FedProx, to tackle heterogeneity in federated networks. FedProx can be viewed as a generalization and re-parametrization of FedAvg, the current state-of-the-art method for federated learning. While this re-parameterization makes only minor modifications to the method itself, these modifications have important ramifications both in theory and in practice. Theoretically, we provide convergence guarantees for our framework when learning over data from non-identical distributions (statistical heterogeneity), and while adhering to device-level systems constraints by allowing each participating device to perform a variable amount of work (systems heterogeneity). Practically, we demonstrate that FedProx allows for more robust convergence than FedAvg across a suite of realistic federated datasets. In particular, in highly heterogeneous settings, FedProx demonstrates significantly more stable and accurate convergence behavior relative to FedAvg-improving absolute test accuracy by 22% on average.
translated by 谷歌翻译
联合学习(FL)算法通常在每个圆数(部分参与)大并且服务器的通信带宽有限时对每个轮子(部分参与)进行分数。近期对FL的收敛分析的作品专注于无偏见的客户采样,例如,随机均匀地采样,由于高度的系统异质性和统计异质性而均匀地采样。本文旨在设计一种自适应客户采样算法,可以解决系统和统计异质性,以最小化壁时钟收敛时间。我们获得了具有任意客户端采样概率的流动算法的新的遗传融合。基于界限,我们分析了建立了总学习时间和采样概率之间的关系,这导致了用于训练时间最小化的非凸优化问题。我们设计一种高效的算法来学习收敛绑定中未知参数,并开发低复杂性算法以大致解决非凸面问题。硬件原型和仿真的实验结果表明,与几个基线采样方案相比,我们所提出的采样方案显着降低了收敛时间。值得注意的是,我们的硬件原型的方案比均匀的采样基线花费73%,以达到相同的目标损失。
translated by 谷歌翻译
众所周知,客户师沟通可能是联邦学习中的主要瓶颈。在这项工作中,我们通过一种新颖的客户端采样方案解决了这个问题,我们将允许的客户数量限制为将其更新传达给主节点的数量。在每个通信回合中,所有参与的客户都会计算他们的更新,但只有具有“重要”更新的客户可以与主人通信。我们表明,可以仅使用更新的规范来衡量重要性,并提供一个公式以最佳客户参与。此公式将所有客户参与的完整更新与我们有限的更新(参与客户数量受到限制)之间的距离最小化。此外,我们提供了一种简单的算法,该算法近似于客户参与的最佳公式,该公式仅需要安全的聚合,因此不会损害客户的隐私。我们在理论上和经验上都表明,对于分布式SGD(DSGD)和联合平均(FedAvg),我们的方法的性能可以接近完全参与,并且优于基线,在参与客户均匀地采样的基线。此外,我们的方法与现有的减少通信开销(例如本地方法和通信压缩方法)的现有方法兼容。
translated by 谷歌翻译
Federated Learning是一种机器学习培训范式,它使客户能够共同培训模型而无需共享自己的本地化数据。但是,实践中联合学习的实施仍然面临许多挑战,例如由于重复的服务器 - 客户同步以及基于SGD的模型更新缺乏适应性,大型通信开销。尽管已经提出了各种方法来通过梯度压缩或量化来降低通信成本,并且提出了联合版本的自适应优化器(例如FedAdam)来增加适应性,目前的联合学习框架仍然无法立即解决上述挑战。在本文中,我们提出了一种具有理论融合保证的新型沟通自适应联合学习方法(FedCAMS)。我们表明,在非convex随机优化设置中,我们提出的fedcams的收敛率与$ o(\ frac {1} {\ sqrt {tkm}})$与其非压缩的对应物相同。各种基准的广泛实验验证了我们的理论分析。
translated by 谷歌翻译
可扩展性和隐私是交叉设备联合学习(FL)系统的两个关键问题。在这项工作中,我们确定了FL中的客户端更新的同步流动聚合不能高效地缩放到几百个并行培训之外。它导致ModelPerforce和训练速度的回报递减,Ampanysto大批量培训。另一方面,FL(即异步FL)中的客户端更新的异步聚合减轻了可扩展性问题。但是,聚合个性链子更新与安全聚合不兼容,这可能导致系统的不良隐私水平。为了解决这些问题,我们提出了一种新颖的缓冲异步聚合方法FedBuff,这是不可知的优化器的选择,并结合了同步和异步FL的最佳特性。我们经验证明FEDBuff比同步FL更有效,比异步FL效率更高3.3倍,同时兼容保留保护技术,如安全聚合和差异隐私。我们在平滑的非凸设置中提供理论融合保证。最后,我们显示在差异私有培训下,FedBuff可以在低隐私设置下占FEDAVGM并实现更高隐私设置的相同实用程序。
translated by 谷歌翻译
在分布式和联合学习中实现全球融合的主要障碍是由于分布式数据的异质性和随机性的客户端跨越梯度的未对准。在这项工作中,我们表明,实际上可以利用数据异质性来通过隐式正规化提高泛化性能。缓解异质性影响的一种方法是在整个训练中鼓励在不同客户端中的渐变对齐。我们的分析表明,通过利用复制SGD的隐式正则化效果的正确优化方法可以实现这一目标,从而导致梯度对准以及测试精度的改进。由于SGD中该正则化的存在完全依赖于在训练期间的不同迷你批次的顺序使用,因此在用大型批次进行训练时固有地没有。为了在增加并行性的同时获得该正则化的泛化效益,我们提出了一种新的渐变算法,其诱导相同的隐式正则化,同时允许在每个更新中使用任意大的批次。我们通过在不同分布式和联合学习设置中实验验证我们算法的优势。
translated by 谷歌翻译
联合学习(FL)是分布式学习的一种变体,其中Edge设备可以协作学习模型,而无需与中央服务器或彼此共享数据。我们将使用公共客户库作为多模型FL的联合设置中同时培训多个独立模型的过程。在这项工作中,我们提出了用于多模型FL的流行FedAvg算法的两个变体,并具有可证明的收敛保证。我们进一步表明,对于相同数量的计算,多模型FL可以比单独训练每个模型具有更好的性能。我们通过在强凸,凸和非凸面设置中进行实验来补充理论结果。
translated by 谷歌翻译
在这项工作中,我们提出了FedSSO,这是一种用于联合学习的服务器端二阶优化方法(FL)。与以前朝这个方向的工作相反,我们在准牛顿方法中采用了服务器端近似,而无需客户的任何培训数据。通过这种方式,我们不仅将计算负担从客户端转移到服务器,而且还消除了客户和服务器之间二阶更新的附加通信。我们为我们的新方法的收敛提供了理论保证,并从经验上证明了我们在凸面和非凸面设置中的快速收敛和沟通节省。
translated by 谷歌翻译
联邦平均(FedAVG),也称为本地SGD,是联邦学习中最受欢迎的算法之一(FL)。尽管其简单和普及,但到目前为止,FADVG的收敛速率尚未确定。即使在最简单的假设(凸,平滑,均匀和有界协方差)下,最着名的上限和下限也不匹配,目前尚不清楚现有分析是否捕获算法的容量。在这项工作中,我们首先通过为FedAVG提供与现有的上限相匹配的下限来解决这个问题,这表明现有的FADVG上限分析不可易于解决。另外,我们在异构环境中建立一个下限,几乎与现有的上限相匹配。虽然我们的下限显示了FEDAVG的局限性,但在额外的三阶平滑度下,我们证明了更乐观的最先进的收敛导致凸和非凸面设置。我们的分析源于我们呼叫迭代偏置的概念,这由SGD轨迹的期望从具有相同初始化的无噪声梯度下降轨迹的偏差来定义。我们在此数量上证明了新颖的尖锐边界,并直观地显示了如何从随机微分方程(SDE)的角度来分析该数量。
translated by 谷歌翻译