联合学习(FL)是一个新的分布式机器学习框架,可以在不收集用户的私人数据的情况下获得可靠的协作培训。但是,由于FL的频繁沟通和平均聚合策略,他们会遇到挑战统计多样性数据和大规模模型。在本文中,我们提出了一个个性化的FL框架,称为基于Tensor分解的个性化联合学习(TDPFED),在该框架中,我们设计了一种具有张力的线性层和卷积层的新颖的张力局部模型,以降低交流成本。 TDPFED使用双级损失函数来通过控制个性化模型和张力的本地模型之间的差距来使全球模型学习的个性化模型优化。此外,有效的分布式学习策略和两种不同的模型聚合策略是为拟议的TDPFED框架设计的。理论融合分析和彻底的实验表明,我们提出的TDPFED框架在降低交流成本的同时实现了最新的性能。
translated by 谷歌翻译
Federated learning (FL) is a decentralized and privacy-preserving machine learning technique in which a group of clients collaborate with a server to learn a global model without sharing clients' data. One challenge associated with FL is statistical diversity among clients, which restricts the global model from delivering good performance on each client's task. To address this, we propose an algorithm for personalized FL (pFedMe) using Moreau envelopes as clients' regularized loss functions, which help decouple personalized model optimization from the global model learning in a bi-level problem stylized for personalized FL. Theoretically, we show that pFedMe's convergence rate is state-of-the-art: achieving quadratic speedup for strongly convex and sublinear speedup of order 2/3 for smooth nonconvex objectives. Experimentally, we verify that pFedMe excels at empirical performance compared with the vanilla FedAvg and Per-FedAvg, a meta-learning based personalized FL algorithm.
translated by 谷歌翻译
联合学习(FL)是一种在不获取客户私有数据的情况下培训全球模型的协同机器学习技术。 FL的主要挑战是客户之间的统计多样性,客户设备之间的计算能力有限,以及服务器和客户之间的过度沟通开销。为解决这些挑战,我们提出了一种通过最大化FEDMAC的相关性稀疏个性化联合学习计划。通过将近似的L1-norm和客户端模型与全局模型之间的相关性结合到标准流失函数中,提高了统计分集数据的性能,并且与非稀疏FL相比,网络所需的通信和计算负载减少。收敛分析表明,FEDMAC中的稀疏约束不会影响全球模型的收敛速度,理论结果表明,FEDMAC可以实现良好的稀疏个性化,这比基于L2-NOM的个性化方法更好。实验,我们展示了与最先进的个性化方法相比的这种稀疏个性化建筑的益处(例如,FEDMAC分别达到98.95%,99.37%,99.37%,99.37%,99.37%,99.37%,99.37%,99.37%,99.37%,99.37%,99.37%,99.37%,高精度,FMNIST,CIFAR-100和非IID变体下的合成数据集)。
translated by 谷歌翻译
在这项工作中,我们提出了FedSSO,这是一种用于联合学习的服务器端二阶优化方法(FL)。与以前朝这个方向的工作相反,我们在准牛顿方法中采用了服务器端近似,而无需客户的任何培训数据。通过这种方式,我们不仅将计算负担从客户端转移到服务器,而且还消除了客户和服务器之间二阶更新的附加通信。我们为我们的新方法的收敛提供了理论保证,并从经验上证明了我们在凸面和非凸面设置中的快速收敛和沟通节省。
translated by 谷歌翻译
由于客户之间缺乏数据和统计多样性,联合学习从模型过度适应的巨大挑战面临巨大的挑战。为了应对这些挑战,本文提出了一种新型的个性化联合学习方法,该方法通过贝叶斯变异推断为pfedbayes。为了减轻过度拟合,将重量不确定性引入了客户和服务器的神经网络。为了实现个性化,每个客户端通过平衡私有数据的构建错误以及其KL Divergence与服务器的全局分布来更新其本地分布参数。理论分析给出了平均泛化误差的上限,并说明了概括误差的收敛速率是最小到对数因子的最佳选择。实验表明,所提出的方法在个性化模型上的表现优于其他高级个性化方法,例如Pfedbayes在MNIST,FMNIST和NON-I.I.I.D下,Pfedbayes的表现分别超过其他SOTA算法的其他SOTA算法的表现为1.25%,0.42%和11.71%。有限的数据。
translated by 谷歌翻译
客户端之间的非独立和相同分布(非IID)数据分布被视为降低联合学习(FL)性能的关键因素。处理非IID数据(如个性化FL和联邦多任务学习(FMTL)的几种方法对研究社区有很大兴趣。在这项工作中,首先,我们使用Laplacian正规化制定FMTL问题,明确地利用客户模型之间的关系进行多任务学习。然后,我们介绍了FMTL问题的新视图,首次表明配制的FMTL问题可用于传统的FL和个性化FL。我们还提出了两种算法FEDU和DFEDU,分别解决了通信集中和分散方案中的配制FMTL问题。从理论上讲,我们证明了两种算法的收敛速率实现了用于非凸起目标的强大凸起和载位加速的线性加速。实验,我们表明我们的算法优于FL设置的传统算法FedVG,在FMTL设置中的Mocha,以及个性化流程中的PFEDME和PER-FEDAVG。
translated by 谷歌翻译
联合学习(FL)是一个分布式的机器学习框架,可以减轻数据孤岛,在该筒仓中,分散的客户在不共享其私人数据的情况下协作学习全球模型。但是,客户的非独立且相同分布的(非IID)数据对训练有素的模型产生了负面影响,并且具有不同本地更新的客户可能会在每个通信回合中对本地梯度造成巨大差距。在本文中,我们提出了一种联合矢量平均(FedVeca)方法来解决上述非IID数据问题。具体而言,我们为与本地梯度相关的全球模型设定了一个新的目标。局部梯度定义为具有步长和方向的双向向量,其中步长为局部更新的数量,并且根据我们的定义将方向分为正和负。在FedVeca中,方向受步尺的影响,因此我们平均双向向量,以降低不同步骤尺寸的效果。然后,我们理论上分析了步骤大小与全球目标之间的关系,并在每个通信循环的步骤大小上获得上限。基于上限,我们为服务器和客户端设计了一种算法,以自适应调整使目标接近最佳的步骤大小。最后,我们通过构建原型系统对不同数据集,模型和场景进行实验,实验结果证明了FedVeca方法的有效性和效率。
translated by 谷歌翻译
联合学习(FL)引发了高通信开销,这可以通过压缩模型更新而大大缓解。然而,网络环境中压缩和模型精度之间的权衡仍不清楚,为简单起见,大多数实现仅采用固定压缩率。在本文中,我们首次系统地检查了该权衡,识别压缩误差对最终模型精度的影响,相对于学习率。具体而言,我们将每个全局迭代的压缩误差因其强大凸面和非凸损耗下的收敛速度分析。然后,我们通过策略性地调整每次迭代中的压缩速率来提高最终模型精度来最大化最终模型精度的适应框架。我们讨论了具有代表压缩算法的实用网络中框架的关键实施问题。对流行的MNIST和CIFAR-10数据集的实验证实,我们的解决方案有效地降低了网络流量,但在FL中保持了高模型精度。
translated by 谷歌翻译
联合学习(FL)是一种保护隐私的范式,其中多个参与者共同解决机器学习问题而无需共享原始数据。与传统的分布式学习不同,FL的独特特征是统计异质性,即,跨参与者的数据分布彼此不同。同时,神经网络解释的最新进展已广泛使用神经切线核(NTK)进行收敛分析。在本文中,我们提出了一个新颖的FL范式,该范式由NTK框架赋予了能力。该范式通过传输比常规FL范式更具表现力的更新数据来解决统计异质性的挑战。具体而言,通过样本的雅各布矩阵,而不是模型的权重/梯度,由参与者上传。然后,服务器构建了经验内核矩阵,以更新全局模型,而无需明确执行梯度下降。我们进一步开发了一种具有提高沟通效率和增强隐私性的变体。数值结果表明,与联邦平均相比,所提出的范式可以达到相同的精度,同时将通信弹的数量减少数量级。
translated by 谷歌翻译
数据异构联合学习(FL)系统遭受了两个重要的收敛误差来源:1)客户漂移错误是由于在客户端执行多个局部优化步骤而引起的,以及2)部分客户参与错误,这是一个事实,仅一小部分子集边缘客户参加每轮培训。我们发现其中,只有前者在文献中受到了极大的关注。为了解决这个问题,我们提出了FedVarp,这是在服务器上应用的一种新颖的差异算法,它消除了由于部分客户参与而导致的错误。为此,服务器只是将每个客户端的最新更新保持在内存中,并将其用作每回合中非参与客户的替代更新。此外,为了减轻服务器上的内存需求,我们提出了一种新颖的基于聚类的方差降低算法clusterfedvarp。与以前提出的方法不同,FedVarp和ClusterFedVarp均不需要在客户端上进行其他计算或其他优化参数的通信。通过广泛的实验,我们表明FedVarp优于最先进的方法,而ClusterFedVarp实现了与FedVarp相当的性能,并且记忆要求较少。
translated by 谷歌翻译
当上行链路和下行链路通信都有错误时联合学习(FL)工作吗?通信噪音可以处理多少,其对学习性能的影响是什么?这项工作致力于通过明确地纳入流水线中的上行链路和下行链路嘈杂的信道来回答这些实际重要的问题。我们在同时上行链路和下行链路嘈杂通信通道上提供了多种新的融合分析,其包括完整和部分客户端参与,直接模型和模型差分传输,以及非独立和相同分布的(IID)本地数据集。这些分析表征了嘈杂通道的流动条件,使其具有与无通信错误的理想情况相同的融合行为。更具体地,为了保持FEDAVG的O(1 / T)具有完美通信的O(1 / T)收敛速率,应控制用于直接模型传输的上行链路和下行链路信噪比(SNR),使得它们被缩放为O(t ^ 2)其中T是通信轮的索引,但可以保持常量的模型差分传输。这些理论结果的关键洞察力是“雷达下的飞行”原则 - 随机梯度下降(SGD)是一个固有的噪声过程,并且可以容忍上行链路/下行链路通信噪声,只要它们不占据时变的SGD噪声即可。我们举例说明了具有两种广泛采用的通信技术 - 传输功率控制和多样性组合的这些理论发现 - 并通过使用多个真实世界流动任务的广泛数值实验进一步通过标准方法验证它们的性能优势。
translated by 谷歌翻译
As a novel distributed learning paradigm, federated learning (FL) faces serious challenges in dealing with massive clients with heterogeneous data distribution and computation and communication resources. Various client-variance-reduction schemes and client sampling strategies have been respectively introduced to improve the robustness of FL. Among others, primal-dual algorithms such as the alternating direction of method multipliers (ADMM) have been found being resilient to data distribution and outperform most of the primal-only FL algorithms. However, the reason behind remains a mystery still. In this paper, we firstly reveal the fact that the federated ADMM is essentially a client-variance-reduced algorithm. While this explains the inherent robustness of federated ADMM, the vanilla version of it lacks the ability to be adaptive to the degree of client heterogeneity. Besides, the global model at the server under client sampling is biased which slows down the practical convergence. To go beyond ADMM, we propose a novel primal-dual FL algorithm, termed FedVRA, that allows one to adaptively control the variance-reduction level and biasness of the global model. In addition, FedVRA unifies several representative FL algorithms in the sense that they are either special instances of FedVRA or are close to it. Extensions of FedVRA to semi/un-supervised learning are also presented. Experiments based on (semi-)supervised image classification tasks demonstrate superiority of FedVRA over the existing schemes in learning scenarios with massive heterogeneous clients and client sampling.
translated by 谷歌翻译
最近,基于区块链的联合学习(BFL)引起了密集的研究关注,因为培训过程是可审核的,并且该体系结构无助于避免了Vanilla Federated学习(VFL)中参数服务器的单点故障。然而,BFL大大升级了通信流量量,因为BFL客户端获得的所有本地模型更新(即,模型参数的更改)都将转移给所有矿工进行验证以及所有客户端以进行聚合。相比之下,参数服务器和VFL中的客户端仅保留汇总模型更新。因此,BFL的巨大沟通流量将不可避免地损害培训效率,并阻碍BFL现实的部署。为了提高BFL的实用性,我们是第一个通过压缩BFL中的通信(称为BCFL)来提出基于快速区块链的联合学习框架的人之一。同时,我们得出了BCFL的收敛速率,而非凸损失损失。为了最大化最终模型的准确性,我们进一步提出问题,以最大程度地减少收敛率的训练损失,而相对于压缩率和块生成速率的训练时间有限,这是BI-CONVEX优化问题,可以是有效解决。最后,为了证明BCFL的效率,我们对标准CIFAR-10和女权主义数据集进行了广泛的实验。我们的实验结果不仅验证了我们的分析的正确性,而且还表明BCFL可以显着将通信流量降低95-98%,或者与BFL相比,训练时间缩短了90-95%。
translated by 谷歌翻译
我们考虑开放的联合学习(FL)系统,客户可以在FL过程中加入和/或离开系统。鉴于当前客户端数量的差异,在开放系统中不能保证与固定模型的收敛性。取而代之的是,我们求助于一个新的性能指标,该指标称我们的开放式FL系统的稳定性为量,该指标量化了开放系统中学习模型的幅度。在假设本地客户端的功能强烈凸出和平滑的假设下,我们从理论上量化了两种FL算法的稳定性半径,即本地SGD和本地ADAM。我们观察到此半径依赖于几个关键参数,包括功能条件号以及随机梯度的方差。通过对合成和现实世界基准数据集的数值模拟,我们的理论结果得到了进一步验证。
translated by 谷歌翻译
在联合学习(FL)的新兴范式中,大量客户端(例如移动设备)用于在各自的数据上训练可能的高维模型。由于移动设备的带宽低,分散的优化方法需要将计算负担从那些客户端转移到计算服务器,同时保留隐私和合理的通信成本。在本文中,我们专注于深度,如多层神经网络的培训,在FL设置下。我们提供了一种基于本地模型的层状和维度更新的新型联合学习方法,减轻了非凸起和手头优化任务的多层性质的新型联合学习方法。我们为Fed-Lamb提供了一种彻底的有限时间收敛性分析,表征其渐变减少的速度有多速度。我们在IID和非IID设置下提供实验结果,不仅可以证实我们的理论,而且与最先进的方法相比,我们的方法的速度更快。
translated by 谷歌翻译
Data heterogeneity across clients is a key challenge in federated learning. Prior works address this by either aligning client and server models or using control variates to correct client model drift. Although these methods achieve fast convergence in convex or simple non-convex problems, the performance in over-parameterized models such as deep neural networks is lacking. In this paper, we first revisit the widely used FedAvg algorithm in a deep neural network to understand how data heterogeneity influences the gradient updates across the neural network layers. We observe that while the feature extraction layers are learned efficiently by FedAvg, the substantial diversity of the final classification layers across clients impedes the performance. Motivated by this, we propose to correct model drift by variance reduction only on the final layers. We demonstrate that this significantly outperforms existing benchmarks at a similar or lower communication cost. We furthermore provide proof for the convergence rate of our algorithm.
translated by 谷歌翻译
With the development and progress of science and technology, the Internet of Things(IoT) has gradually entered people's lives, bringing great convenience to our lives and improving people's work efficiency. Specifically, the IoT can replace humans in jobs that they cannot perform. As a new type of IoT vehicle, the current status and trend of research on Unmanned Aerial Vehicle(UAV) is gratifying, and the development prospect is very promising. However, privacy and communication are still very serious issues in drone applications. This is because most drones still use centralized cloud-based data processing, which may lead to leakage of data collected by drones. At the same time, the large amount of data collected by drones may incur greater communication overhead when transferred to the cloud. Federated learning as a means of privacy protection can effectively solve the above two problems. However, federated learning when applied to UAV networks also needs to consider the heterogeneity of data, which is caused by regional differences in UAV regulation. In response, this paper proposes a new algorithm FedBA to optimize the global model and solves the data heterogeneity problem. In addition, we apply the algorithm to some real datasets, and the experimental results show that the algorithm outperforms other algorithms and improves the accuracy of the local model for UAVs.
translated by 谷歌翻译
在最新的联合学习研究(FL)的研究中,广泛采用了客户选择方案来处理沟通效率的问题。但是,从随机选择的非代表性子集汇总的模型更新的较大差异直接减慢了FL收敛性。我们提出了一种新型的基于聚类的客户选择方案,以通过降低方差加速FL收敛。简单而有效的方案旨在改善聚类效果并控制效果波动,因此,以采样的一定代表性生成客户子集。从理论上讲,我们证明了降低方差方案的改进。由于差异的差异,我们还提供了提出方法的更严格的收敛保证。实验结果证实了与替代方案相比,我们计划的效率超出了效率。
translated by 谷歌翻译
有限的通信资源,例如带宽和能源以及设备之间的数据异质性是联合学习的两个主要瓶颈(FL)。为了应对这些挑战,我们首先使用部分模型聚合(PMA)设计了一个新颖的FL框架,该框架仅汇总负责特征提取的神经网络的下层,而与复杂模式识别相对应的上层仍保留在个性化设备上。提出的PMA-FL能够解决数据异质性并减少无线通道中的传输信息。然后,我们在非convex损耗函数设置下获得了框架的收敛结合。借助此界限,我们定义了一个新的目标函数,名为“计划数据样本量”,以将原始的不明智优化问题转移到可用于设备调度,带宽分配,计算和通信时间分配的可拖动问题中。我们的分析表明,当PMA-FL的沟通和计算部分具有相同的功率时,可以实现最佳时段。我们还开发了一种二级方法来解决最佳带宽分配策略,并使用SET扩展算法来解决最佳设备调度。与最先进的基准测试相比,提议的PMA-FL在两个典型的异质数据集(即Minist和CIFAR-10)上提高了2.72%和11.6%的精度。此外,提出的联合动态设备调度和资源优化方法的精度比考虑的基准略高,但它们提供了令人满意的能量和时间缩短:MNIST的29%能量或20%的时间缩短; CIFAR-10的能量和25%的能量或12.5%的时间缩短。
translated by 谷歌翻译
联合学习(FL)有助于多个客户共同培训机器学习模型,而无需共享其私人数据。但是,客户的非IID数据给FL带来了艰巨的挑战。现有的个性化方法在很大程度上依赖于将一个完整模型作为基本单元的默认处理方法,而忽略了不同层对客户非IID数据的重要性。在这项工作中,我们提出了一个新的框架,联合模型组成部分自我注意力(FEDMCSA),以处理FL中的非IID数据,该数据采用模型组件自我注意机制来颗粒片促进不同客户之间的合作。这种机制促进了相似模型组件之间的合作,同时减少了差异很大的模型组件之间的干扰。我们进行了广泛的实验,以证明FEDMCSA在四个基准数据集上的表现优于先前的方法。此外,我们从经验上展示了模型组成部分自我发项机制的有效性,该机制与现有的个性化FL互补,可以显着提高FL的性能。
translated by 谷歌翻译