Federated学习(FL)最近已成为流行的隐私合作学习范式。但是,它遭受了客户之间非独立和相同分布的(非IID)数据的困扰。在本文中,我们提出了一个新颖的框架,称为合成数据辅助联合学习(SDA-FL),以通过共享合成数据来解决这一非IID挑战。具体而言,每个客户端都预测了本地生成对抗网络(GAN)以生成差异化私有合成数据,这些数据被上传到参数服务器(PS)以构建全局共享的合成数据集。为了为合成数据集生成自信的伪标签,我们还提出了PS执行的迭代伪标记机制。本地私人数据集和合成数据集与自信的伪标签的结合可导致客户之间的数据分布几乎相同,从而提高了本地模型之间的一致性并使全球聚合受益。广泛的实验证明,在监督和半监督的设置下,所提出的框架在几个基准数据集中的大幅度优于基线方法。
translated by 谷歌翻译
Federated learning achieves joint training of deep models by connecting decentralized data sources, which can significantly mitigate the risk of privacy leakage. However, in a more general case, the distributions of labels among clients are different, called ``label distribution skew''. Directly applying conventional federated learning without consideration of label distribution skew issue significantly hurts the performance of the global model. To this end, we propose a novel federated learning method, named FedMGD, to alleviate the performance degradation caused by the label distribution skew issue. It introduces a global Generative Adversarial Network to model the global data distribution without access to local datasets, so the global model can be trained using the global information of data distribution without privacy leakage. The experimental results demonstrate that our proposed method significantly outperforms the state-of-the-art on several public benchmarks. Code is available at \url{https://github.com/Sheng-T/FedMGD}.
translated by 谷歌翻译
空中接入网络已被识别为各种事物互联网(物联网)服务和应用程序的重要驾驶员。特别是,以无人机互联网为中心的空中计算网络基础设施已经掀起了自动图像识别的新革命。这种新兴技术依赖于共享地面真理标记的无人机(UAV)群之间的数据,以培训高质量的自动图像识别模型。但是,这种方法将带来数据隐私和数据可用性挑战。为了解决这些问题,我们首先向一个半监督的联邦学习(SSFL)框架提供隐私保留的UAV图像识别。具体而言,我们提出了模型参数混合策略,以改善两个现实场景下的FL和半监督学习方法的天真组合(标签 - 客户端和标签 - 服务器),其被称为联合混合(FEDMIX)。此外,在不同环境中使用不同的相机模块,在不同环境中使用不同的相机模块,在不同的相机模块,即统计异质性,存在显着差异。为了减轻统计异质性问题,我们提出了基于客户参与训练的频率的聚合规则,即FedFReq聚合规则,可以根据其频率调整相应的本地模型的权重。数值结果表明,我们提出的方法的性能明显优于当前基线的性能,并且对不同的非IID等级的客户数据具有强大。
translated by 谷歌翻译
Federated Learning(FL)是一种流行的分散和保护隐私的机器学习(FL)框架,近年来一直受到广泛的研究关注。现有的大多数作品都集中在监督学习(SL)问题上,在这些问题上假定客户在服务器没有数据时携带标签的数据集。但是,在现实的情况下,由于缺乏专业知识和动力,客户通常无法在服务器托管少量标记数据的情况下标记其数据。因此,如何合理地利用服务器标记的数据和客户端的未标记数据至关重要。在本文中,我们提出了一种新的FL算法,称为FEDSEAL,以解决该半监督联邦学习(SSFL)问题。我们的算法利用自我安装的学习和互补的负面学习来提高客户对未标记数据无监督学习的准确性和效率,并在服务器方和客户方面进行了模型培训。我们对SSFL设置中的时尚摄影和CIFAR10数据集的实验结果验证了我们方法的有效性,该方法的效率超过了最先进的SSFL方法。
translated by 谷歌翻译
联邦学习对分布式数据利用率和隐私保护表达了极大的潜力。大多数现有的联合学习方法侧重于监督设置,这意味着存储在每个客户端中的所有数据都有标签。但是,在现实世界应用中,客户数据无法完全标记。因此,如何利用未标记的数据应该是联邦学习的新挑战。虽然一些研究正在试图克服这一挑战,但它们可能会遭受信息泄漏或误导性信息使用问题。为了解决这些问题,在本文中,我们提出了一种名为Fedtrinet的新型联合半监督学习方法,该方法由两个学习阶段组成。在第一阶段,我们使用带有FADVG的标记数据预先列教Fedtrinet。在第二阶段,我们的目标是使大部分未标记的数据来帮助模型学习。特别是,我们建议使用三个网络和动态质量控制机制来为未标记数据产生高质量的伪标签,该数据被添加到训练集中。最后,Fedtrinet使用新的训练设置来重新培训模型。在三个公共数据集上的实验结果表明,提出的Fedtrinet在IID和非IID设置下优于最先进的基线。
translated by 谷歌翻译
将知识蒸馏应用于个性化的跨筒仓联合学习,可以很好地减轻用户异质性的问题。然而,这种方法需要一个代理数据集,这很难在现实世界中获得。此外,基于参数平均的全球模型将导致用户隐私的泄漏。我们介绍了一个分布式的三位玩家GaN来实现客户之间的DataFree共蒸馏。该技术减轻了用户异质性问题,更好地保护用户隐私。我们证实,GaN产生的方法可以使联合蒸馏更有效和稳健,并且在获得全球知识的基础上,共蒸馏可以为各个客户达到良好的性能。我们对基准数据集的广泛实验证明了与最先进的方法的卓越的泛化性能。
translated by 谷歌翻译
自从联合学习(FL)被引入具有隐私保护的分散学习技术以来,分布式数据的统计异质性是实现FL应用中实现稳健性能和稳定收敛性的主要障碍。已经研究了模型个性化方法来克服这个问题。但是,现有的方法主要是在完全标记的数据的先决条件下,这在实践中是不现实的,由于需要专业知识。由部分标记的条件引起的主要问题是,标记数据不足的客户可能会遭受不公平的性能增益,因为他们缺乏足够的本地分销见解来自定义全球模型。为了解决这个问题,1)我们提出了一个新型的个性化的半监督学习范式,该范式允许部分标记或未标记的客户寻求与数据相关的客户(助手代理)的标签辅助,从而增强他们对本地数据的认识; 2)基于此范式,我们设计了一个基于不确定性的数据关系度量,以确保选定的帮助者可以提供值得信赖的伪标签,而不是误导当地培训; 3)为了减轻助手搜索引入的网络过载,我们进一步开发了助手选择协议,以实现有效的绩效牺牲的有效沟通。实验表明,与其他具有部分标记数据的相关作品相比,我们提出的方法可以获得卓越的性能和更稳定的收敛性,尤其是在高度异质的环境中。
translated by 谷歌翻译
联合学习(FL)旨在通过使客户能够在不共享其私有数据的情况下协作构建机器学习模型来保护数据隐私。然而,最近的作品表明FL容易受到基于梯度的数据恢复攻击。保存技术的品种已经利用,以进一步提升FL的隐私。尽管如此,它们的计算或通信昂贵(例如,同态加密)或遭受精密损失(例如,差异隐私)。在这项工作中,我们提出了\ textsc {fedcg},一个新颖的\下划线{fed} erated学习方法,它利用\下划线{c} onditional \下划线{g}良好的对手网络来实现高级隐私保护,同时仍然保持竞争模型表现。更具体地说,\ textsc {fedcg}将每个客户端的本地网络分解为私有提取器和公共分类器,并保留本地提取器保护隐私。而不是暴露作为隐私泄漏的罪魁祸首的提取器,而是将客户的生成器与服务器共享,以聚合旨在增强客户端网络性能的公共知识。广泛的实验表明,与基线FL方法相比,\ TextSc {FEDCG}可以实现竞争模型性能,数值隐私分析表明\ TextSC {FEDCG}具有高级别的隐私保存能力。
translated by 谷歌翻译
联邦学习(FL)是利用属于患者,人,公司或行业的敏感数据的合适解决方案,这些数据在刚性隐私约束下工作的难题。 FL主要或部分地支持数据隐私和安全问题,并提供促进促进多个边缘设备或组织的模型问题的替代方案,以使用许多本地数据培训全局模型而不具有它们。由其分布式自然引起的FL的非IID数据具有显着的性能下降和稳定性偏斜。本文介绍了一种新颖的方法,通过增强图像动态平衡客户端的数据分布,以解决FL的非IID数据问题。介绍的方法非常稳定模型培训,并将模型的测试精度从83.22%提高到89.43%,对于高度IID FL设定中的胸部X射线图像的多胸疾病检测。 IID,非IID和非IID的结果,联合培训表明,该方法可能有助于鼓励组织或研究人员开发更好的系统,以获得与数据隐私的数据的价值不仅适用于医疗保健,而且领域。
translated by 谷歌翻译
联邦学习(FL)旨在以隐私的方式从大规模的分散设备中学习联合知识。但是,由于高质量标记的数据需要昂贵的人类智能和努力,因此带有错误标签的数据(称为嘈杂标签)无处不在,实际上不可避免地会导致性能退化。尽管提出了许多直接处理嘈杂标签的方法,但这些方法要么需要过多的计算开销,要么违反FL的隐私保护原则。为此,我们将重点放在FL上,目的是减轻嘈杂标签所产生的性能退化,同时保证数据隐私。具体而言,我们提出了一种局部自我调节方法,该方法通过隐式阻碍模型记忆噪声标签并明确地缩小了使用自我蒸馏之间的原始实例和增强实例之间的模型输出差异,从而有效地规范了局部训练过程。实验结果表明,我们提出的方法可以在三个基准数据集上的各种噪声水平中获得明显的抵抗力。此外,我们将方法与现有的最新方法集成在一起,并在实际数据集服装1M上实现卓越的性能。该代码可在https://github.com/sprinter1999/fedlsr上找到。
translated by 谷歌翻译
作为一种有希望的隐私机器学习方法,联合学习(FL)可以使客户跨客户培训,而不会损害其机密的本地数据。但是,现有的FL方法遇到了不均分布数据的推理性能低的问题,因为它们中的大多数依赖于联合平均(FIDAVG)基于联合的聚合。通过以粗略的方式平均模型参数,FedAvg将局部模型的个体特征黯然失色,这极大地限制了FL的推理能力。更糟糕的是,在每一轮FL培训中,FedAvg向客户端向客户派遣了相同的初始本地模型,这很容易导致对最佳全局模型的局限性搜索。为了解决上述问题,本文提出了一种新颖有效的FL范式,名为FEDMR(联合模型重组)。与传统的基于FedAvg的方法不同,FEDMR的云服务器将收集到的本地型号的每一层层混合,并重组它们以实现新的模型,以供客户端培训。由于在每场FL比赛中进行了细粒度的模型重组和本地培训,FEDMR可以迅速为所有客户找出一个全球最佳模型。全面的实验结果表明,与最先进的FL方法相比,FEDMR可以显着提高推理准确性而不会引起额外的通信开销。
translated by 谷歌翻译
事实证明,生成的对抗网络是学习复杂且高维数据分布的强大工具,但是已证明诸如模式崩溃之类的问题使他们难以训练它们。当数据分散到联合学习设置中的几个客户端时,这是一个更困难的问题,因为诸如客户端漂移和非IID数据之类的问题使联盟的平均平均值很难收敛。在这项工作中,我们研究了如何在培训数据分散到客户上时如何学习数据分布的任务,无法共享。我们的目标是从集中进行此分配中进行采样,而数据永远不会离开客户。我们使用标准基准图像数据集显示,现有方法在这种设置中失败,当局部时期的局部数量变大时,会经历所谓的客户漂移。因此,我们提出了一种新型的方法,我们称为Effgan:微调联合gans的合奏。作为本地专家发电机的合奏,Effgan能够学习所有客户端的数据分布并减轻客户漂移。它能够用大量的本地时代进行训练,从而使其比以前的作品更有效。
translated by 谷歌翻译
一滴联合学习(FL)最近被出现为有希望的方法,允许中央服务器在单个通信中学习模型。尽管通信成本低,但现有的一次性的单次方法大多是不切实际或面临的固有限制,例如,需要公共数据集,客户的型号是同质的,需要上传其他数据/型号信息。为了克服这些问题,我们提出了一种更实用的无数据方法,名为FEDSYN的一枪框架,具有异质性。我们的Fedsyn通过数据生成阶段和模型蒸馏阶段列出全球模型。据我们所知,FEDSYN是由于以下优点,FEDSYN可以实际应用于各种实际应用程序的方法:(1)FEDSYN不需要在客户端之间传输的其他信息(模型参数除外)服务器; (2)FEDSYN不需要任何用于培训的辅助数据集; (3)FEDSYN是第一个考虑FL中的模型和统计异质性,即客户的数据是非IID,不同的客户端可能具有不同的模型架构。关于各种现实世界数据集的实验表明了我们的Fedsyn的优越性。例如,当数据是非IID时,FEDSYN在CIFAR10数据集中优于CEFAR10数据集的最佳基线方法FED-ADI的最佳基准方法。
translated by 谷歌翻译
联邦学习〜(FL)最近引起了学术界和行业的越来越多的关注,其最终目标是在隐私和沟通限制下进行协作培训。现有的基于FL算法的现有迭代模型需要大量的通信回合,以获得良好的模型,这是由于不同客户之间的极为不平衡和非平衡的I.D数据分配。因此,我们建议FedDM从多个本地替代功能中构建全球培训目标,这使服务器能够获得对损失格局的更全球视野。详细说明,我们在每个客户端构建了合成数据集,以在本地匹配从原始数据到分发匹配的损失景观。与笨拙的模型权重相比,FedDM通过传输更多信息和较小的合成数据来降低通信回合并提高模型质量。我们对三个图像分类数据集进行了广泛的实验,结果表明,在效率和模型性能方面,我们的方法可以优于其他FL的实验。此外,我们证明,FedDM可以适应使用高斯机制来保护差异隐私,并在相同的隐私预算下训练更好的模型。
translated by 谷歌翻译
联合学习(FL)是一个分散的学习范式,其中多个客户在不集中其本地数据的情况下进行培训深度学习模型,因此保留数据隐私。现实世界中的应用程序通常涉及在不同客户端的数据集上进行分发转换,这损害了客户从各自的数据分布中看不见样本的概括能力。在这项工作中,我们解决了最近提出的功能转移问题,其中客户具有不同的功能分布,而标签分布相同。我们建议联邦代表性扩大(FRAUG)来解决这个实用且具有挑战性的问题。我们的方法在嵌入空间中生成合成客户端特定的样本,以增加通常小客户端数据集。为此,我们训练一个共享的生成模型,以融合客户从其不同功能分布中学习的知识。该发电机合成了客户端 - 不合时式嵌入,然后通过表示转换网络(RTNET)将其局部转换为特定于客户端的嵌入。通过将知识转移到客户端,生成的嵌入式作为客户模型的正常化程序,并减少对本地原始数据集的过度拟合,从而改善了概括。我们对公共基准和现实医学数据集的经验评估证明了该方法的有效性,该方法在包括Partialfed和FedBN在内的非IID特征的当前最新FL方法大大优于最新的FL方法。
translated by 谷歌翻译
在联合学习(FL)中,模型性能通常遭受数据异质性引起的客户漂移,而主流工作则专注于纠正客户漂移。我们提出了一种名为Virtual同质性学习(VHL)的不同方法,以直接“纠正”数据异质性。尤其是,VHL使用一个虚拟均匀的数据集进行FL,该数据集精心制作以满足两个条件:不包含私人信息和可分开的情况。虚拟数据集可以从跨客户端共享的纯噪声中生成,旨在校准异质客户的功能。从理论上讲,我们证明VHL可以在自然分布上实现可证明的概括性能。从经验上讲,我们证明了VHL赋予FL具有巨大改善的收敛速度和概括性能。VHL是使用虚拟数据集解决数据异质性的首次尝试,为FL提供了新的有效手段。
translated by 谷歌翻译
联合学习(FL)根据多个本地客户端协同聚合共享全球模型,同时保持培训数据分散以保护数据隐私。但是,标准的FL方法忽略了嘈杂的客户问题,这可能会损害聚合模型的整体性能。在本文中,我们首先分析了嘈杂的客户声明,然后用不同的噪声分布模型噪声客户端(例如,Bernoulli和截断的高斯分布)。要使用嘈杂的客户,我们提出了一个简单但有效的FL框架,名为联邦嘈杂的客户学习(FED-NCL),它是一个即插即用算法,并包含两个主要组件:动态的数据质量测量(DQM)量化每个参与客户端的数据质量,以及噪声鲁棒聚合(NRA),通过共同考虑本地训练数据和每个客户端的数据质量来自适应地聚合每个客户端的本地模型。我们的FED-NCL可以轻松应用于任何标准的流行流以处理嘈杂的客户端问题。各种数据集的实验结果表明,我们的算法提高了具有嘈杂客户端的不同现实系统的性能。
translated by 谷歌翻译
Swarm learning (SL) is an emerging promising decentralized machine learning paradigm and has achieved high performance in clinical applications. SL solves the problem of a central structure in federated learning by combining edge computing and blockchain-based peer-to-peer network. While there are promising results in the assumption of the independent and identically distributed (IID) data across participants, SL suffers from performance degradation as the degree of the non-IID data increases. To address this problem, we propose a generative augmentation framework in swarm learning called SL-GAN, which augments the non-IID data by generating the synthetic data from participants. SL-GAN trains generators and discriminators locally, and periodically aggregation via a randomly elected coordinator in SL network. Under the standard assumptions, we theoretically prove the convergence of SL-GAN using stochastic approximations. Experimental results demonstrate that SL-GAN outperforms state-of-art methods on three real world clinical datasets including Tuberculosis, Leukemia, COVID-19.
translated by 谷歌翻译
隐私法规法(例如GDPR)将透明度和安全性作为数据处理算法的设计支柱。在这种情况下,联邦学习是保护隐私的分布式机器学习的最具影响力的框架之一,从而实现了许多自然语言处理和计算机视觉任务的惊人结果。一些联合学习框架采用差异隐私,以防止私人数据泄漏到未经授权的政党和恶意攻击者。但是,许多研究突出了标准联邦学习对中毒和推理的脆弱性,因此引起了人们对敏感数据潜在风险的担忧。为了解决此问题,我们提出了SGDE,这是一种生成数据交换协议,可改善跨索洛联合会中的用户安全性和机器学习性能。 SGDE的核心是共享具有强大差异隐私的数据生成器,保证了对私人数据培训的培训,而不是通信显式梯度信息。这些发电机合成了任意大量数据,这些数据保留了私人样品的独特特征,但有很大差异。我们展示了将SGDE纳入跨核心联合网络如何提高对联邦学习最有影响力的攻击的弹性。我们在图像和表格数据集上测试我们的方法,利用β变量自动编码器作为数据生成器,并突出了对非生成数据的本地和联合学习的公平性和绩效改进。
translated by 谷歌翻译
传统的联邦优化方法的性能较差(即降低准确性),尤其是对于高度偏斜的数据。在本文中,我们调查了佛罗里达州的标签分布偏斜,在那里标签的分布各不相同。首先,我们从统计视图研究了标签分布偏斜。我们在理论上和经验上都证明了基于软马克斯跨凝结的先前方法不合适,这可能会导致本地模型非常适合少数群体和缺失的类别。此外,我们从理论上引入了一个偏离,以测量本地更新后梯度的偏差。最后,我们建议通过\ textbf {l} ogits \ textbf {c}启动)FedLc(\ textbf {fed {fed}学习,该学习根据每个类别的出现可能性。 FedLC通过添加成对标签的边距将细粒度校准的跨透镜损失应用于本地更新。联合数据集和现实世界数据集的广泛实验表明,联邦快递会导致更准确的全球模型和大大改善的性能。此外,将其他FL方法集成到我们的方法中可以进一步增强全球模型的性能。
translated by 谷歌翻译