本文提出了一种简单,准确且计算上有效的方法,以将欧几里得空间中开发的普通无气体滤波器应用于在流形上发展的系统。我们使用称为稳定嵌入的数学理论来使无味的Kalman滤波器保持状态估计,以保持状态估计值在表现出色的估计性能的同时,与歧管近距离近距离。我们通过将其应用于卫星系统模型并将其与其他专门针对歧管上系统设计的非意识到的卡尔曼过滤器进行比较,确认了我们设计的过滤器的性能。我们设计的过滤器的估计误差很低,可以使状态估计与预期的歧管密切相邻,并消耗少量的计算时间。同样,我们设计的过滤器非常简单易用,因为我们的过滤器直接采用了在欧几里得空间中设计的现成的标准的无气味卡尔曼滤波器,而没有任何特定的歧管结构构造的离散方法或坐标转换。
translated by 谷歌翻译
姿势估计对于机器人感知,路径计划等很重要。机器人姿势可以在基质谎言组上建模,并且通常通过基于滤波器的方法进行估算。在本文中,我们在存在随机噪声的情况下建立了不变扩展Kalman滤波器(IEKF)的误差公式,并将其应用于视觉辅助惯性导航。我们通过OpenVINS平台上的数值模拟和实验评估我们的算法。在Euroc公共MAV数据集上执行的仿真和实验都表明,我们的算法优于某些基于最先进的滤波器方法,例如基于Quaternion的EKF,首先估计Jacobian EKF等。
translated by 谷歌翻译
用于在线状态估计的随机过滤器是自治系统的核心技术。此类过滤器的性能是系统能力的关键限制因素之一。此类过滤器的渐近行为(例如,用于常规操作)和瞬态响应(例如,对于快速初始化和重置)对于保证自主系统的稳健操作至关重要。本文使用n个方向测量值(包括车身框架和参考框架方向类型测量值)引入了陀螺仪辅助姿态估计器的新通用公式。该方法基于一种集成状态公式,该公式结合了导航,所有方向传感器的外部校准以及在单个模棱两可的几何结构中的陀螺式偏置状态。这种新提出的对称性允许模块化的不同方向测量及其外部校准,同时保持在同一对称性中包括偏置态的能力。随后使用此对称性的基于滤波器的估计量明显改善了瞬态响应,与最新方法相比,渐近偏置和外部校准估计。估计器在统计代表性的模拟中得到了验证,并在现实世界实验中进行了测试。
translated by 谷歌翻译
Visual Inertial Odometry (VIO) is the problem of estimating a robot's trajectory by combining information from an inertial measurement unit (IMU) and a camera, and is of great interest to the robotics community. This paper develops a novel Lie group symmetry for the VIO problem and applies the recently proposed equivariant filter. The symmetry is shown to be compatible with the invariance of the VIO reference frame, lead to exact linearisation of bias-free IMU dynamics, and provide equivariance of the visual measurement function. As a result, the equivariant filter (EqF) based on this Lie group is a consistent estimator for VIO with lower linearisation error in the propagation of state dynamics and a higher order equivariant output approximation than standard formulations. Experimental results on the popular EuRoC and UZH FPV datasets demonstrate that the proposed system outperforms other state-of-the-art VIO algorithms in terms of both speed and accuracy.
translated by 谷歌翻译
Dexterous and autonomous robots should be capable of executing elaborated dynamical motions skillfully. Learning techniques may be leveraged to build models of such dynamic skills. To accomplish this, the learning model needs to encode a stable vector field that resembles the desired motion dynamics. This is challenging as the robot state does not evolve on a Euclidean space, and therefore the stability guarantees and vector field encoding need to account for the geometry arising from, for example, the orientation representation. To tackle this problem, we propose learning Riemannian stable dynamical systems (RSDS) from demonstrations, allowing us to account for different geometric constraints resulting from the dynamical system state representation. Our approach provides Lyapunov-stability guarantees on Riemannian manifolds that are enforced on the desired motion dynamics via diffeomorphisms built on neural manifold ODEs. We show that our Riemannian approach makes it possible to learn stable dynamical systems displaying complicated vector fields on both illustrative examples and real-world manipulation tasks, where Euclidean approximations fail.
translated by 谷歌翻译
Incorporating prior knowledge of physics laws and structural properties of dynamical systems into the design of deep learning architectures has proven to be a powerful technique for improving their computational efficiency and generalization capacity. Learning accurate models of robot dynamics is critical for safe and stable control. Autonomous mobile robots, including wheeled, aerial, and underwater vehicles, can be modeled as controlled Lagrangian or Hamiltonian rigid-body systems evolving on matrix Lie groups. In this paper, we introduce a new structure-preserving deep learning architecture, the Lie group Forced Variational Integrator Network (LieFVIN), capable of learning controlled Lagrangian or Hamiltonian dynamics on Lie groups, either from position-velocity or position-only data. By design, LieFVINs preserve both the Lie group structure on which the dynamics evolve and the symplectic structure underlying the Hamiltonian or Lagrangian systems of interest. The proposed architecture learns surrogate discrete-time flow maps instead of surrogate vector fields, which allows better and faster prediction without requiring the use of a numerical integrator, neural ODE, or adjoint techniques. Furthermore, the learnt discrete-time dynamics can be combined seamlessly with computationally scalable discrete-time (optimal) control strategies.
translated by 谷歌翻译
本文介绍了一种新型跟踪滤波器,主要用于在自动表面车辆(ASV)上的碰撞避免系统中使用。所提出的方法利用自动信息系统(AIS)消息传递协议来利用实时运动信息,以估计附近协同目标的位置,速度和标题。使用与源自余弦的球面规律的运动方程,在大地测量坐标中递归地估计每个目标的状态。这改善了先前的方法,其中许多方法采用扩展的卡尔曼滤波器(EKF),因此需要局部平面坐标帧的规范,以便以易于微差形式描述状态运动学。建议的大地电线UKF避免了对该本地飞机的需求。该特征对于远程ASV来说是特别有利的,其必须否则必须定期重新定义新的局部平面来缩短线性化误差。在真实世界的运营中,这种重复的重新定义可以引入错误并使任务规划复杂化。通过模拟和现场测试显示所提出的大地电线UKF以及传统的飞机 - 笛卡尔ekf,无论是在估计误差和稳定性方面的表现还是更好。
translated by 谷歌翻译
目前,国家估计对于机器人技术非常重要,基于不确定性表示的谎言组对于国家估计问题很自然。有必要充分利用基质谎言组的几何形状和运动学。因此,该注释首次对最近提出的矩阵lie组$ se_k(3)$提供了详细的推导,我们的结果扩展了Barfoot \ cite {Barfoot2017State}的结果。然后,我们描述了该组适合状态表示的情况。我们还基于MATLAB框架开发了代码,以快速实施和测试。
translated by 谷歌翻译
虽然已经提出了用于国家估计的利用现有LIE组结构的许多作品,但特别是不变的扩展卡尔曼滤波器(IEKF),少数论文解决了允许给定系统进入IEKF框架的组结构的构造,即制造动态群体染色和观察不变。在本文中,我们介绍了大量系统,包括涉及在实践中遇到的导航车辆的大多数问题。对于那些系统,我们介绍一种新的方法,系统地为状态空间提供组结构,包括诸如偏差的车身框架的载体。我们使用它来派生与线性观察者或过滤器那些类似的观察者。建议的统一和多功能框架包括IHKF已经成功的所有系统,改善了用于传感器偏差的惯性导航的最新的“不完美”IEKF,并且允许寻址新颖的示例,如GNSS天线杆臂估计。
translated by 谷歌翻译
本文提出了在不同运动条件下不同帧中的惯性测量单元(IMU)预融合的统一数学框架。导航状态精确地离散化为三部分:本地增量,全局状态和全局增量。全局增量可以在不同的帧中计算,例如局部大地测量导航帧和地球中心固定帧。称为IMU预融合的本地增量可以根据代理的运动和IMU的等级的不同假设计算。因此,在不同环境下的惯性集成导航系统的在线状态估计更准确和更方便。
translated by 谷歌翻译
高性能跟踪四级车辆的控制是空中机器人技术的重要挑战。对称是物理系统的基本属性,并提供了为设计高性能控制算法提供工具的潜力。我们提出了一种采用任何给定对称性的设计方法,在一组坐标中将相关误差线性化,并使用LQR设计获得高性能控制;一种方法,我们将术语的调节器设计。我们表明,四极管车辆承认了几种不同的对称性:直接产物对称性,扩展姿势对称性和姿势和速度对称性,并表明每个对称性都可以用来定义全局误差。我们通过模拟比较线性化系统,发现扩展的姿势和姿势和速度对称性在存在大干扰的情况下优于直接产物对称性。这表明对称性对称性和组仿射对称性的选择有改善的线性化误差。
translated by 谷歌翻译
在本文中,我们提出了一种学习稳定的动力学系统的方法,该系统在里曼尼亚歧管上不断发展。该方法利用数据效率的程序来学习差异转换,该过程将简单的稳定动力系统映射到复杂的机器人技能上。通过从差异几何形状中利用数学工具,该方法可确保学习的技能满足基础歧管所施加的几何约束,例如用于方向和SPD的刚度矩阵,同时将逆转性保留到给定的目标。首先在公共基准上的模拟中测试了所提出的方法,该方法通过将笛卡尔数据投射到UQ和SPD歧管中,并与现有方法进行了比较。除了评估公共基准测试的方法外,还对在不同条件下进行瓶子的真正机器人进行了几项实验,并与人类操作员合作进行了钻井任务。评估在学习准确性和任务适应能力方面显示出令人鼓舞的结果。
translated by 谷歌翻译
在本文中,提出了一个基于Chebyshev多项式优化(CHEVOPT)的后时间最大估计的新框架,它提出了将非线性连续时状态估计转换为恒定参数优化的问题。具体而言,随时间变化的系统状态由Chebyshev多项式表示,未知的Chebyshev系数通过最大程度地减少先验,动力学和测量的加权总和来优化。在最小二乘意义上,提出的CHEVOPT是最佳的连续时间估计,需要进行批处理处理。还提出了递归滑动窗口版本,以满足实时应用程序的要求。与众所周知的高斯过滤器相比,Chevopt可以更好地解决动力学和测量中的非线性。指示性示例的数值结果表明,所提出的Chevopt在扩展/无情的卡尔曼过滤器和扩展的批次/固定lag更平滑的情况下,取得了明显提高的精度,闭上了cramer-rao的下限。
translated by 谷歌翻译
来自视觉信息的特征点的全局收敛位置观察者的设计是一个具有挑战性的问题,特别是对于仅具有惯性测量的情况,并且没有均匀可观察性的假设,这仍然长时间保持开放。我们在本文中提供了解决问题的解决方案,假设只有特征点的轴承,以及机器人的偏置线性加速度和机器人的旋转速度 - 都可以使用。此外,与现有相关结果相反,我们不需要重力常数的值。所提出的方法在最近开发的基于参数估计的观察者(Ortega等人,Syst。控制。Lett。,Vol.85,2015)及其在我们以前的工作中的矩阵群体的延伸。给出了观察者收敛的机器人轨迹的条件,这些条件比激发和均匀完全可观察性条件的标准持久性严格弱。最后,我们将建议的设计应用于视觉惯性导航问题。还提出了仿真结果以说明我们的观察者设计。
translated by 谷歌翻译
在多传感器数据融合的背景下,我们检查时间延迟估计或时间校准的问题。处理间隔和其他因素的差异通常导致不同传感器的测量更新之间的相对延迟。正确(最佳)数据融合要求需要预先知道或在线识别相对延迟。在文献中有几个最近的建议,可以使用递归,因果滤波器等延迟确定延长的卡尔曼滤波器(EKF)。我们仔细审查了该制定,并表明当延迟在滤波器状态向量中作为要估计的参数时,eKF(和相关算法)的结构存在基本问题。反过来,这些结构问题既容易发生递归过滤器偏置和不一致。我们的理论分析得到了仿真研究支持,这些研究表明了过滤性能方面的影响;虽然过滤噪声差异的调整可以减少不一致或发散的可能性,但仍然存在潜在的结构问题。我们提供简要建议,以便在避免标准滤波算法的缺点时维持递归过滤的计算效率。
translated by 谷歌翻译
本文介绍了基于神经网络的无气体卡尔曼滤波器(UKF),以跟踪已知的,非合作的,翻滚的目标航天飞机的姿势(即位置和方向),以近距离呈现场景。 UKF根据使用卷积神经网络(CNN)从目标航天器的传入单眼图像中提取的姿势信息估计目标相对于服务器的相对轨道和态度状态。为了启用可靠的跟踪,使用自适应状态噪声补偿在线调整UKF的过程噪声协方差矩阵。具体而言,新得出和实现了相对态度动力学的封闭形式的过程噪声模型。为了全面分析提议的CNN驱动UKF的性能和鲁棒性,本文还介绍了卫星硬件在环上的轨迹轨迹(衬衫)数据集,其中包括两个具有代表性的聚会轨迹的标签图像低地球轨道。对于每个轨迹,分别从图形渲染器和机器人测试台创建了两组图像,以允许测试跨域间隙的滤波器的鲁棒性。拟议的UKF在衬衫的两个轨迹领域进行了评估,并被证明在稳态下具有次数级的位置和程度级别的方向误差。
translated by 谷歌翻译
我们提供了概率分布的Riemannian歧管上的经典力学的信息几何公式,该分布是具有双翼连接的仿射歧管。在非参数形式主义中,我们考虑了有限的样本空间上的全套正概率函数,并以统计歧管上的切线和cotangent空间为特定的表达式提供了一种,就希尔伯特束结构而言,我们称之统计捆绑包。在这种情况下,我们使用规范双对的平行传输来计算一维统计模型的速度和加速度,并在束上定义了Lagrangian和Hamiltonian力学的连贯形式主义。最后,在一系列示例中,我们展示了我们的形式主义如何为概率单纯性加速自然梯度动力学提供一个一致的框架,为在优化,游戏理论和神经网络中的直接应用铺平了道路。
translated by 谷歌翻译
一个谎言小组是一个旧的数学抽象对象,追溯到xix世纪,当数学家大道谎言奠定了连续转型组理论的基础。正如经常发生的那样,许多年后,它的使用已经遍布各种科学和技术领域。在机器人学中,我们最近在估计领域中经历了一种重要的趋势,特别是在导航的运动估计中。然而,对于绝大多数机器人来说,谎言群体是高度抽象的结构,因此难以理解和使用。这可能是由于谎言理论上的大多数文献是由数学家和物理学家编写的,这些主义者可能比我们更多地用于这种理论涉及的深层抽象。在机器人学的估计中,通常没有必要利用理论的全部能力,因此需要选择材料的努力。在这篇论文中,我们将通过最基本的谎言理论原则,目的是传达明确和有用的想法,并留下了谎言理论的重要语料库。即使是这种肢解,这里所包含的材料也已被证明在机器人的现代估计算法中非常有用,特别是在SLAM,视觉内径等领域。除了这种微谎言之外,我们提供了一些应用示例的一章,以及机器人中使用的主要谎言团体的广泛公式参考,包括大多数雅各比矩阵以及轻松操纵它们的方式。我们还提供了一个新的C ++模板库,实现此处描述的所有功能。
translated by 谷歌翻译
Normalizing flows provide a general mechanism for defining expressive probability distributions, only requiring the specification of a (usually simple) base distribution and a series of bijective transformations. There has been much recent work on normalizing flows, ranging from improving their expressive power to expanding their application. We believe the field has now matured and is in need of a unified perspective. In this review, we attempt to provide such a perspective by describing flows through the lens of probabilistic modeling and inference. We place special emphasis on the fundamental principles of flow design, and discuss foundational topics such as expressive power and computational trade-offs. We also broaden the conceptual framing of flows by relating them to more general probability transformations. Lastly, we summarize the use of flows for tasks such as generative modeling, approximate inference, and supervised learning.
translated by 谷歌翻译
理想情况下,机器人应该以最大化关于其内部系统和外部操作环境的状态所获得的知识的方式移动。轨迹设计是一个具有挑战性的问题,从各种角度来看,从信息理论分析到基于倾斜的方法。最近,已经提出了基于可观察性的指标来找到能够快速准确的状态和参数估计的轨迹。这些方法的活力和功效尚未在文献中众所周知。在本文中,我们比较了两个最先进的方法,以便可观察性感知轨迹优化,并寻求增加重要的理论澄清和对其整体效力的宝贵讨论。为了评估,我们使用逼真的物理模拟器检查传感器到传感器外部自校准的代表性任务。我们还研究了这些算法的灵敏度,以改变易欣欣传感器测量的信息内容。
translated by 谷歌翻译