Dexterous and autonomous robots should be capable of executing elaborated dynamical motions skillfully. Learning techniques may be leveraged to build models of such dynamic skills. To accomplish this, the learning model needs to encode a stable vector field that resembles the desired motion dynamics. This is challenging as the robot state does not evolve on a Euclidean space, and therefore the stability guarantees and vector field encoding need to account for the geometry arising from, for example, the orientation representation. To tackle this problem, we propose learning Riemannian stable dynamical systems (RSDS) from demonstrations, allowing us to account for different geometric constraints resulting from the dynamical system state representation. Our approach provides Lyapunov-stability guarantees on Riemannian manifolds that are enforced on the desired motion dynamics via diffeomorphisms built on neural manifold ODEs. We show that our Riemannian approach makes it possible to learn stable dynamical systems displaying complicated vector fields on both illustrative examples and real-world manipulation tasks, where Euclidean approximations fail.
translated by 谷歌翻译
在本文中,我们提出了一种学习稳定的动力学系统的方法,该系统在里曼尼亚歧管上不断发展。该方法利用数据效率的程序来学习差异转换,该过程将简单的稳定动力系统映射到复杂的机器人技能上。通过从差异几何形状中利用数学工具,该方法可确保学习的技能满足基础歧管所施加的几何约束,例如用于方向和SPD的刚度矩阵,同时将逆转性保留到给定的目标。首先在公共基准上的模拟中测试了所提出的方法,该方法通过将笛卡尔数据投射到UQ和SPD歧管中,并与现有方法进行了比较。除了评估公共基准测试的方法外,还对在不同条件下进行瓶子的真正机器人进行了几项实验,并与人类操作员合作进行了钻井任务。评估在学习准确性和任务适应能力方面显示出令人鼓舞的结果。
translated by 谷歌翻译
人类和机器人的动态运动是由姿势依赖性的非线性相互作用在自由程度之间广泛驱动的。但是,在研究人类运动产生的机制时,这些动力学效应仍被忽略。受最近作品的启发,我们假设人类运动计划为地球协同序列,因此对应于用分段最小能量实现的协调关节运动。基础计算模型建立在Riemannian几何形状上,以说明身体的惯性特征。通过对各种人类手臂运动的分析,我们发现我们的模型片段运动转化为测量协同作用,并成功预测了观察到的手臂姿势,手动轨迹及其各自的速度曲线。此外,我们表明我们的分析可以进一步利用,以通过将单个人类协同作用作为机器人配置空间中的地球途径转移到机器人中。
translated by 谷歌翻译
如果机器人曾经实现与动物所展示的机器人相当的自动运动,则它们必须获得在损害,故障或环境条件下快速恢复运动行为的能力,从而损害了其有效移动的能力。我们提出了一种方法,该方法使我们的机器人和模拟机器人能够在几十次尝试中恢复自由运动行为的高度。我们的方法采用行为规范,以等级的差异约束来表达所需的行为。我们展示了如何通过编码模板来考虑这些约束,从而产生了将先前优化的行为推广到新情况下以快速学习的形式概括的秘诀。我们进一步说明,在数据驱动的上下文中,足够的限制通常很容易确定。作为例证,我们证明了我们在物理7 DOF六型六杆元机器人上的恢复方法,以及对6 DOF 2D运动机制的模拟。在这两种情况下,我们恢复了与先前优化的运动在功能上无法区分的行为。
translated by 谷歌翻译
诸如操纵器之类的铰接机器人必须在不确定和动态的环境中运行,例如,相互作用(例如与人类同事)是必要的。在这种情况下,必须快速适应操作空间限制的意外变化的能力至关重要。在操纵器的配置空间中的某些点(称为奇异点),机器人失去了一个或多个自由度(DOF),并且无法在特定的操作空间方向上移动。无法在操作空间中朝任意方向移动会损害适应性和安全性。我们引入了一个几何感知奇异性索引,该索引在对称正定定义矩阵上使用Riemannian度量定义,以提供与奇异构型的接近度的度量。我们证明我们的索引避免了其他共同指数固有的某些故障模式和困难。此外,我们表明该索引可以轻松区分,使其与用于操作空间控制的局部优化方法兼容。我们的实验结果表明,对于遵循任务的到达和路径,基于我们的索引优化优于一种常见的可操作性最大化技术,并确保奇异性运动动作。
translated by 谷歌翻译
贝叶斯优化是一种数据高效技术,可用于机器人中的控制参数调整,参数策略适应和结构设计。这些问题中的许多问题需要优化在非欧几里德域上定义的函数,如球体,旋转组或正向矩阵的空间。为此,必须在感兴趣的空间内之前或等效地定义内核的高斯进程。有效内核通常反映它们定义的空间的几何形状,但设计它们通常是非微不足道的。基于随机部分微分方程和Laplace-Beltrami运营商的频谱理论,最近在Riemannian Mat'En内核的工作,提供了朝向构建此类几何感知内核的承诺途径。在本文中,我们研究了在机器人中的兴趣流动上实施这些内核的技术,展示了它们在一组人工基准函数上的性能,并说明了各种机器人应用的几何感知贝叶斯优化,覆盖方向控制,可操纵性优化,和运动规划,同时显示其提高性能。
translated by 谷歌翻译
我们提出了一种用于构建线性时间不变(LTI)模型的新颖框架,用于一类稳定的非线性动态的Koopman运算符的数据驱动表示。 Koopman操作员(发电机)将有限维非线性系统升压到可能无限的线性特征空间。为了利用它来建模,需要发现Koopman运算符的有限维表示。学习合适的功能是具有挑战性的,因为一种需要学习koopman-invariant(在动态下线性演变的LTI功能以及相关(跨越原始状态) - 一般无监督的学习任务。对于这个问题的理论上是良好的解决方案,我们通过用潜伏的线性模型的提升的聚集体系来组合扩散综合学习者来提出学习Koopman-Invoriant坐标。使用稳定矩阵的无约束参数化以及上述特征结构,我们学习Koopman操作员特征而不假设预定义的功能库或了解频谱,同时确保操作员近似精度而确保稳定性。我们展示了所提出的方法与众所周知的LASA手写数据集上的最先进方法的卓越效果。
translated by 谷歌翻译
解决逆运动学问题是针对清晰机器人的运动计划,控制和校准的基本挑战。这些机器人的运动学模型通常通过关节角度进行参数化,从而在机器人构型和最终效果姿势之间产生复杂的映射。或者,可以使用机器人附加点之间的不变距离来表示运动学模型和任务约束。在本文中,我们将基于距离的逆运动学的等效性和大量铰接式机器人和任务约束的距离几何问题进行形式化。与以前的方法不同,我们使用距离几何形状和低级别矩阵完成之间的连接来通过局部优化完成部分欧几里得距离矩阵来找到逆运动学解决方案。此外,我们用固定级革兰氏矩阵的Riemannian歧管来参数欧几里得距离矩阵的空间,从而使我们能够利用各种成熟的Riemannian优化方法。最后,我们表明,绑定的平滑性可用于生成知情的初始化,而无需大量的计算开销,从而改善收敛性。我们证明,我们的逆运动求解器比传统技术获得更高的成功率,并且在涉及许多工作区约束的问题上大大优于它们。
translated by 谷歌翻译
Many problems in robotics are fundamentally problems of geometry, which lead to an increased research effort in geometric methods for robotics in recent years. The results were algorithms using the various frameworks of screw theory, Lie algebra and dual quaternions. A unification and generalization of these popular formalisms can be found in geometric algebra. The aim of this paper is to showcase the capabilities of geometric algebra when applied to robot manipulation tasks. In particular the modelling of cost functions for optimal control can be done uniformly across different geometric primitives leading to a low symbolic complexity of the resulting expressions and a geometric intuitiveness. We demonstrate the usefulness, simplicity and computational efficiency of geometric algebra in several experiments using a Franka Emika robot. The presented algorithms were implemented in c++20 and resulted in the publicly available library \textit{gafro}. The benchmark shows faster computation of the kinematics than state-of-the-art robotics libraries.
translated by 谷歌翻译
学习如何随着时间的推移发展复杂的动态系统是系统识别中的关键挑战。对于安全关键系统,它通常是至关重要的,因为学习的模型保证会聚到一些均衡点。为此,当完全观察到各种时,用神经拉布诺夫函数规范的神经杂物是一种有希望的方法。然而,对于实际应用,部分观察是常态。正如我们将证明,未观察到的增强状态的初始化可能成为神经杂物余下的关键问题。为了减轻这个问题,我们建议增加该系统的历史历史。通过国家增强在离散时间系统中的启发,我们得到了神经延迟微分方程。基于古典时间延迟稳定性分析,我们展示了如何确保学习模型的稳定性,从理论上分析我们的方法。我们的实验表明其适用于稳定的系统识别部分观察到的系统和学习延迟反馈控制中的稳定反馈策略。
translated by 谷歌翻译
在许多学科中,动态系统的数据信息预测模型的开发引起了广泛的兴趣。我们提出了一个统一的框架,用于混合机械和机器学习方法,以从嘈杂和部分观察到的数据中识别动态系统。我们将纯数据驱动的学习与混合模型进行比较,这些学习结合了不完善的域知识。我们的公式与所选的机器学习模型不可知,在连续和离散的时间设置中都呈现,并且与表现出很大的内存和错误的模型误差兼容。首先,我们从学习理论的角度研究无内存线性(W.R.T.参数依赖性)模型误差,从而定义了过多的风险和概括误差。对于沿阵行的连续时间系统,我们证明,多余的风险和泛化误差都通过与T的正方形介于T的术语(指定训练数据的时间间隔)的术语界定。其次,我们研究了通过记忆建模而受益的方案,证明了两类连续时间复发性神经网络(RNN)的通用近似定理:两者都可以学习与内存有关的模型误差。此外,我们将一类RNN连接到储层计算,从而将学习依赖性错误的学习与使用随机特征在Banach空间之间进行监督学习的最新工作联系起来。给出了数值结果(Lorenz '63,Lorenz '96多尺度系统),以比较纯粹的数据驱动和混合方法,发现混合方法较少,渴望数据较少,并且更有效。最后,我们从数值上证明了如何利用数据同化来从嘈杂,部分观察到的数据中学习隐藏的动态,并说明了通过这种方法和培训此类模型来表示记忆的挑战。
translated by 谷歌翻译
我们介绍了CheBlieset,一种对(各向异性)歧管的组成的方法。对基于GRAP和基于组的神经网络的成功进行冲浪,我们利用了几何深度学习领域的最新发展,以推导出一种新的方法来利用数据中的任何各向异性。通过离散映射的谎言组,我们开发由各向异性卷积层(Chebyshev卷积),空间汇集和解凝层制成的图形神经网络,以及全球汇集层。集团的标准因素是通过具有各向异性左不变性的黎曼距离的图形上的等级和不变的运算符来实现的。由于其简单的形式,Riemannian公制可以在空间和方向域中模拟任何各向异性。这种对Riemannian度量的各向异性的控制允许平衡图形卷积层的不变性(各向异性度量)的平衡(各向异性指标)。因此,我们打开大门以更好地了解各向异性特性。此外,我们经验证明了在CIFAR10上的各向异性参数的存在(数据依赖性)甜点。这一关键的结果是通过利用数据中的各向异性属性来获得福利的证据。我们还评估了在STL10(图像数据)和ClimateNet(球面数据)上的这种方法的可扩展性,显示了对不同任务的显着适应性。
translated by 谷歌翻译
最近,对具有神经网络的物理系统建模和计算的兴趣越来越多。在古典力学中,哈密顿系统是一种优雅而紧凑的形式主义,该动力学由一个标量功能,哈密顿量完全决定。解决方案轨迹通常受到约束,以在线性矢量空间的子序列上进化。在这项工作中,我们提出了新的方法,以准确地逼近其解决方案的示例数据信息的约束机械系统的哈密顿功能。我们通过使用明确的谎言组集成商和其他经典方案来关注学习策略中约束的重要性。
translated by 谷歌翻译
量子哈密顿学习和量子吉布斯采样的双重任务与物理和化学中的许多重要问题有关。在低温方案中,这些任务的算法通常会遭受施状能力,例如因样本或时间复杂性差而遭受。为了解决此类韧性,我们将量子自然梯度下降的概括引入了参数化的混合状态,并提供了稳健的一阶近似算法,即量子 - 固定镜下降。我们使用信息几何学和量子计量学的工具证明了双重任务的数据样本效率,因此首次将经典Fisher效率的开创性结果推广到变异量子算法。我们的方法扩展了以前样品有效的技术,以允许模型选择的灵活性,包括基于量子汉密尔顿的量子模型,包括基于量子的模型,这些模型可能会规避棘手的时间复杂性。我们的一阶算法是使用经典镜下降二元性的新型量子概括得出的。两种结果都需要特殊的度量选择,即Bogoliubov-Kubo-Mori度量。为了从数值上测试我们提出的算法,我们将它们的性能与现有基准进行了关于横向场ISING模型的量子Gibbs采样任务的现有基准。最后,我们提出了一种初始化策略,利用几何局部性来建模状态的序列(例如量子 - 故事过程)的序列。我们从经验上证明了它在实际和想象的时间演化的经验上,同时定义了更广泛的潜在应用。
translated by 谷歌翻译
我们对通过歧管(例如球形,Tori和其他隐式表面)描述的复杂几何形状的学习生成模型感兴趣。现有(欧几里德)生成模型的当前延伸仅限于特定几何形状,并且通常遭受高计算成本。我们介绍了Moser Flow(MF),是连续标准化流量(CNF)系列内的一类新的生成型号。 MF还通过解决方案产生CNF,然而,与其他CNF方法不同,其模型(学习)密度被参数化,因为源(先前)密度减去神经网络(NN)的发散。分歧是局部线性差分操作员,易于近似和计算歧管。因此,与其他CNFS不同,MF不需要在训练期间通过颂歌求解器调用或反向。此外,将模型密度明确表示为NN的发散而不是作为颂歌的解决方案有助于学习高保真密度。从理论上讲,我们证明了MF在合适的假设下构成了通用密度近似器。经验上,我们首次证明了流动模型的使用从一般曲面采样,并在挑战地球和气候的挑战性几何形状和现实世界基准中实现了密度估计,样本质量和培训复杂性的显着改善科学。
translated by 谷歌翻译
在本章中,我们确定了基本的几何结构,这些几何结构是采样,优化,推理和自适应决策问题的基础。基于此识别,我们得出了利用这些几何结构来有效解决这些问题的算法。我们表明,在这些领域中自然出现了广泛的几何理论,范围从测量过程,信息差异,泊松几何和几何整合。具体而言,我们解释了(i)如何利用汉密尔顿系统的符合性几何形状,使我们能够构建(加速)采样和优化方法,(ii)希尔伯特亚空间和Stein操作员的理论提供了一种通用方法来获得可靠的估计器,(iii)(iii)(iii)保留决策的信息几何形状会产生执行主动推理的自适应剂。在整个过程中,我们强调了这些领域之间的丰富联系。例如,推论借鉴了抽样和优化,并且自适应决策通过推断其反事实后果来评估决策。我们的博览会提供了基本思想的概念概述,而不是技术讨论,可以在本文中的参考文献中找到。
translated by 谷歌翻译
用于未知非线性系统的学习和合成稳定控制器是现实世界和工业应用的具有挑战性问题。 Koopman操作员理论允许通过直线系统和非线性控制系统的镜头通过线性系统和非线性控制系统的镜头来分析非线性系统。这些方法的关键思想,在于将非线性系统的坐标转换为Koopman可观察,这是允许原始系统(控制系统)作为更高尺寸线性(双线性控制)系统的坐标。然而,对于非线性控制系统,通过应用基于Koopman操作员的学习方法获得的双线性控制模型不一定是稳定的,因此,不保证稳定反馈控制的存在,这对于许多真实世界的应用来说是至关重要的。同时识别基于这些可稳定的Koopman的双线性控制系统以及相关的Koopman可观察到仍然是一个开放的问题。在本文中,我们提出了一个框架,以通过同时学习为基于Koopman的底层未知的非线性控制系统以及基于Koopman的控制Lyapunov函数(CLF)来识别和构造这些可稳定的双线性模型及其相关的可观察能力。双线性模型使用学习者和伪空。我们提出的方法从而为非线性控制系统具有未知动态的非线性控制系统提供了可证明的全球渐近稳定性的保证。提供了数值模拟,以验证我们提出的稳定反馈控制器为未知的非线性系统的效力。
translated by 谷歌翻译
动态系统参见在物理,生物学,化学等自然科学中广泛使用,以及电路分析,计算流体动力学和控制等工程学科。对于简单的系统,可以通过应用基本物理法来导出管理动态的微分方程。然而,对于更复杂的系统,这种方法变得非常困难。数据驱动建模是一种替代范式,可以使用真实系统的观察来了解系统的动态的近似值。近年来,对数据驱动的建模技术的兴趣增加,特别是神经网络已被证明提供了解决广泛任务的有效框架。本文提供了使用神经网络构建动态系统模型的不同方式的调查。除了基础概述外,我们还审查了相关的文献,概述了这些建模范式必须克服的数值模拟中最重要的挑战。根据审查的文献和确定的挑战,我们提供了关于有前途的研究领域的讨论。
translated by 谷歌翻译
收缩理论是一种分析工具,用于研究以均匀的正面矩阵定义的收缩度量下的非自主(即,时变)非线性系统的差动动力学,其存在导致增量指数的必要和充分表征多种溶液轨迹彼此相互稳定性的稳定性。通过使用平方差分长度作为Lyapunov样功能,其非线性稳定性分析向下沸腾以找到满足以表达为线性矩阵不等式的稳定条件的合适的收缩度量,表明可以在众所周知的线性系统之间绘制许多平行线非线性系统理论与收缩理论。此外,收缩理论利用了与比较引理结合使用的指数稳定性的优越稳健性。这产生了基于神经网络的控制和估计方案的急需安全性和稳定性保证,而不借助使用均匀渐近稳定性的更涉及的输入到状态稳定性方法。这种独特的特征允许通过凸优化来系统构造收缩度量,从而获得了由于扰动和学习误差而在外部扰动的时变的目标轨迹和解决方案轨迹之间的距离上的明确指数界限。因此,本文的目的是介绍了收缩理论的课程概述及其在确定性和随机系统的非线性稳定性分析中的优点,重点导出了各种基于学习和数据驱动的自动控制方法的正式鲁棒性和稳定性保证。特别是,我们提供了使用深神经网络寻找收缩指标和相关控制和估计法的技术的详细审查。
translated by 谷歌翻译
连续归一化流(CNF)是一类生成模型,可以通过求解普通的微分方程(ODE)将先验分布转换为模型分布。我们建议通过最大程度地减少概率路径差异(PPD)来训练CNF,这是CNF产生的概率密度路径与目标概率密度路径之间的新型差异家族。 PPD是使用对数质量保护公式制定的,该公式是线性的一阶部分微分方程,将对数目标概率和CNF的定义向量场进行配方。 PPD比现有方法具有多个关键好处:它避免了在迭代中解决颂歌的需求,很容易应用于歧管数据,比例到高维度,并与大型目标路径兼容,该目标路径在有限的时间内插值纯噪声和数据。从理论上讲,PPD显示为结合经典概率差异。从经验上讲,我们表明,通过最小化PPD实现最新的CNF在现有的低维歧管基准上获得了最新的可能性和样品质量,并且是生成模型以扩展到中度高维歧管的第一个示例。
translated by 谷歌翻译