人类和机器人的动态运动是由姿势依赖性的非线性相互作用在自由程度之间广泛驱动的。但是,在研究人类运动产生的机制时,这些动力学效应仍被忽略。受最近作品的启发,我们假设人类运动计划为地球协同序列,因此对应于用分段最小能量实现的协调关节运动。基础计算模型建立在Riemannian几何形状上,以说明身体的惯性特征。通过对各种人类手臂运动的分析,我们发现我们的模型片段运动转化为测量协同作用,并成功预测了观察到的手臂姿势,手动轨迹及其各自的速度曲线。此外,我们表明我们的分析可以进一步利用,以通过将单个人类协同作用作为机器人配置空间中的地球途径转移到机器人中。
translated by 谷歌翻译
Dexterous and autonomous robots should be capable of executing elaborated dynamical motions skillfully. Learning techniques may be leveraged to build models of such dynamic skills. To accomplish this, the learning model needs to encode a stable vector field that resembles the desired motion dynamics. This is challenging as the robot state does not evolve on a Euclidean space, and therefore the stability guarantees and vector field encoding need to account for the geometry arising from, for example, the orientation representation. To tackle this problem, we propose learning Riemannian stable dynamical systems (RSDS) from demonstrations, allowing us to account for different geometric constraints resulting from the dynamical system state representation. Our approach provides Lyapunov-stability guarantees on Riemannian manifolds that are enforced on the desired motion dynamics via diffeomorphisms built on neural manifold ODEs. We show that our Riemannian approach makes it possible to learn stable dynamical systems displaying complicated vector fields on both illustrative examples and real-world manipulation tasks, where Euclidean approximations fail.
translated by 谷歌翻译
诸如操纵器之类的铰接机器人必须在不确定和动态的环境中运行,例如,相互作用(例如与人类同事)是必要的。在这种情况下,必须快速适应操作空间限制的意外变化的能力至关重要。在操纵器的配置空间中的某些点(称为奇异点),机器人失去了一个或多个自由度(DOF),并且无法在特定的操作空间方向上移动。无法在操作空间中朝任意方向移动会损害适应性和安全性。我们引入了一个几何感知奇异性索引,该索引在对称正定定义矩阵上使用Riemannian度量定义,以提供与奇异构型的接近度的度量。我们证明我们的索引避免了其他共同指数固有的某些故障模式和困难。此外,我们表明该索引可以轻松区分,使其与用于操作空间控制的局部优化方法兼容。我们的实验结果表明,对于遵循任务的到达和路径,基于我们的索引优化优于一种常见的可操作性最大化技术,并确保奇异性运动动作。
translated by 谷歌翻译
操纵性椭圆形有效地捕获人姿势并揭示有关手头任务的信息。他们在任务依赖的机器人教学中的使用,尤其是他们从老师到学习者的转移 - 可以推动模仿人类运动。尽管在最近的文献中,重点转向了两个机器人之间的可操作性转移,但迄今为止,对另一个运动系统的能力的适应尚未解决,并且从人类到机器人的转移研究仍处于起步阶段。这项工作提出了一种新型的可操作性域适应方法,用于将可操作性信息传输到另一个运动系统的域。由于可操作性矩阵/椭圆形是对称的阳性定义(SPD),因此可以将它们视为SPD矩阵的Riemannian歧管上的点。我们是第一个从点云注册的角度解决可操作性转移问题的问题。我们提出了一种具有平行运输初始化的歧管感知的迭代次数最接近的算法(ICP)。此外,我们基于固有的几何特征,引入了与可操作性椭圆形相匹配的对应关系。我们确认了使用二-DOF操纵器以及代表人类臂运动学的7-DOF模型的模拟实验方法。
translated by 谷歌翻译
Many problems in robotics are fundamentally problems of geometry, which lead to an increased research effort in geometric methods for robotics in recent years. The results were algorithms using the various frameworks of screw theory, Lie algebra and dual quaternions. A unification and generalization of these popular formalisms can be found in geometric algebra. The aim of this paper is to showcase the capabilities of geometric algebra when applied to robot manipulation tasks. In particular the modelling of cost functions for optimal control can be done uniformly across different geometric primitives leading to a low symbolic complexity of the resulting expressions and a geometric intuitiveness. We demonstrate the usefulness, simplicity and computational efficiency of geometric algebra in several experiments using a Franka Emika robot. The presented algorithms were implemented in c++20 and resulted in the publicly available library \textit{gafro}. The benchmark shows faster computation of the kinematics than state-of-the-art robotics libraries.
translated by 谷歌翻译
Traditionally, robots are regarded as universal motion generation machines. They are designed mainly by kinematics considerations while the desired dynamics is imposed by strong actuators and high-rate control loops. As an alternative, one can first consider the robot's intrinsic dynamics and optimize it in accordance with the desired tasks. Therefore, one needs to better understand intrinsic, uncontrolled dynamics of robotic systems. In this paper we focus on periodic orbits, as fundamental dynamic properties with many practical applications. Algebraic topology and differential geometry provide some fundamental statements about existence of periodic orbits. As an example, we present periodic orbits of the simplest multi-body system: the double-pendulum in gravity. This simple system already displays a rich variety of periodic orbits. We classify these into three classes: toroidal orbits, disk orbits and nonlinear normal modes. Some of these we found by geometrical insights and some by numerical simulation and sampling.
translated by 谷歌翻译
解决逆运动学问题是针对清晰机器人的运动计划,控制和校准的基本挑战。这些机器人的运动学模型通常通过关节角度进行参数化,从而在机器人构型和最终效果姿势之间产生复杂的映射。或者,可以使用机器人附加点之间的不变距离来表示运动学模型和任务约束。在本文中,我们将基于距离的逆运动学的等效性和大量铰接式机器人和任务约束的距离几何问题进行形式化。与以前的方法不同,我们使用距离几何形状和低级别矩阵完成之间的连接来通过局部优化完成部分欧几里得距离矩阵来找到逆运动学解决方案。此外,我们用固定级革兰氏矩阵的Riemannian歧管来参数欧几里得距离矩阵的空间,从而使我们能够利用各种成熟的Riemannian优化方法。最后,我们表明,绑定的平滑性可用于生成知情的初始化,而无需大量的计算开销,从而改善收敛性。我们证明,我们的逆运动求解器比传统技术获得更高的成功率,并且在涉及许多工作区约束的问题上大大优于它们。
translated by 谷歌翻译
老年人的数量越来越多,对医疗保健以及特别是康复医疗保健令人担忧。辅助技术和辅助机器人特别可能有助于改善这一过程。我们开发一个能够向患者展示康复锻炼的机器人教练,观看患者进行练习并给予他的反馈,以提高他的表现并鼓励他。该系统的HRI基于我们的研究与康复治疗师和目标人群的团队。系统依赖于人类运动分析。我们开发了一种学习概率表达的方法,从专家演示中学习理想运动。使用使用Microsoft Kinect V2捕获的位置和取向特征采用高斯混合模型。为了评估患者的动作,我们提出了一个时间的多级分析,暂时和空间上识别并解释了身体部位误差。该分析与分类算法相结合允许机器人提供教练建议,以使患者提高他的运动。三次康复演习的评价表明了提出的学习和评估Kinaesthetic运动的方法。
translated by 谷歌翻译
机器人社区在为软机器人设备建模提供的理论工具的复杂程度中看到了指数增长。已经提出了不同的解决方案以克服与软机器人建模相关的困难,通常利用其他科学学科,例如连续式机械和计算机图形。这些理论基础通常被认为是理所当然的,这导致复杂的文献,因此,从未得到完整审查的主题。Withing这种情况下,提交的文件的目标是双重的。突出显示涉及建模技术的不同系列的常见理论根源,采用统一语言,以简化其主要连接和差异的分析。因此,对上市接近自然如下,并最终提供在该领域的主要作品的完整,解开,审查。
translated by 谷歌翻译
如果机器人曾经实现与动物所展示的机器人相当的自动运动,则它们必须获得在损害,故障或环境条件下快速恢复运动行为的能力,从而损害了其有效移动的能力。我们提出了一种方法,该方法使我们的机器人和模拟机器人能够在几十次尝试中恢复自由运动行为的高度。我们的方法采用行为规范,以等级的差异约束来表达所需的行为。我们展示了如何通过编码模板来考虑这些约束,从而产生了将先前优化的行为推广到新情况下以快速学习的形式概括的秘诀。我们进一步说明,在数据驱动的上下文中,足够的限制通常很容易确定。作为例证,我们证明了我们在物理7 DOF六型六杆元机器人上的恢复方法,以及对6 DOF 2D运动机制的模拟。在这两种情况下,我们恢复了与先前优化的运动在功能上无法区分的行为。
translated by 谷歌翻译
在本文中,我们提出了一种学习稳定的动力学系统的方法,该系统在里曼尼亚歧管上不断发展。该方法利用数据效率的程序来学习差异转换,该过程将简单的稳定动力系统映射到复杂的机器人技能上。通过从差异几何形状中利用数学工具,该方法可确保学习的技能满足基础歧管所施加的几何约束,例如用于方向和SPD的刚度矩阵,同时将逆转性保留到给定的目标。首先在公共基准上的模拟中测试了所提出的方法,该方法通过将笛卡尔数据投射到UQ和SPD歧管中,并与现有方法进行了比较。除了评估公共基准测试的方法外,还对在不同条件下进行瓶子的真正机器人进行了几项实验,并与人类操作员合作进行了钻井任务。评估在学习准确性和任务适应能力方面显示出令人鼓舞的结果。
translated by 谷歌翻译
在人类机器人的相互作用中,眼球运动在非语言交流中起着重要作用。但是,控制机器人眼的动作表现出与人眼动物系统相似的性能仍然是一个重大挑战。在本文中,我们研究了如何使用电缆驱动的驱动系统来控制人眼的现实模型,该系统模仿了六个眼外肌肉的自由度。仿生设计引入了解决新的挑战,最值得注意的是,需要控制每种肌肉的支撑,以防止运动过程中的紧张感损失,这将导致电缆松弛和缺乏控制。我们构建了一个机器人原型,并开发了一个非线性模拟器和两个控制器。在第一种方法中,我们使用局部衍生技术线性化了非线性模型,并设计了线性 - 季度最佳控制器,以优化计算准确性,能量消耗和运动持续时间的成本函数。第二种方法使用复发性神经网络,该神经网络从系统的样本轨迹中学习非线性系统动力学,以及一个非线性轨迹优化求解器,可最大程度地减少相似的成本函数。我们专注于具有完全不受限制的运动学的快速saccadic眼球运动,以及六根电缆的控制信号的生成,这些电缆同时满足了几个动态优化标准。该模型忠实地模仿了人类扫视观察到的三维旋转运动学和动力学。我们的实验结果表明,尽管两种方法都产生了相似的结果,但非线性方法对于未来改进该模型的方法更加灵活,该模型的计算是线性化模型的位置依赖性偏向和局部衍生物的计算变得特别乏味。
translated by 谷歌翻译
在腿部机器人技术中,计划和执行敏捷的机动演习一直是一个长期的挑战。它需要实时得出运动计划和本地反馈政策,以处理动力学动量的非物质。为此,我们提出了一个混合预测控制器,该控制器考虑了机器人的致动界限和全身动力学。它将反馈政策与触觉信息相结合,以在本地预测未来的行动。由于采用可行性驱动的方法,它在几毫秒内收敛。我们的预测控制器使Anymal机器人能够在现实的场景中生成敏捷操作。关键要素是跟踪本地反馈策略,因为与全身控制相反,它们达到了所需的角动量。据我们所知,我们的预测控制器是第一个处理驱动限制,生成敏捷的机动操作以及执行低级扭矩控制的最佳反馈策略,而无需使用单独的全身控制器。
translated by 谷歌翻译
该论文提出了一个计划者,以使用质心动力学和人形机器人的完整运动学来产生步行轨迹。机器人与行走表面之间的相互作用是通过新条件明确建模的,即\ emph {动态互补性约束}。该方法不需要预定义的接触序列,并自动生成脚步。我们通过一组任务来表征机器人控制目标,并通过解决最佳控制问题来解决它。我们表明,可以通过指定最小的参考集,例如恒定所需的质量速度中心和地面上的参考点来自动实现行走运动。此外,我们分析了接触模型选择如何影响计算时间。我们通过为人形机器人ICUB生成和测试步行轨迹来验证该方法。
translated by 谷歌翻译
动态MRI可以捕获具有高对比度的软组织器官中的时间解剖变化,但是获得的序列通常遭受有限的体积覆盖,这使得器官形状轨迹的高分辨率重建在时间研究中的主要挑战。由于腹部器官形状的变异性跨越时间和受试者,本研究的目的是朝向3D致密速度测量来完全覆盖整个表面并提取有意义的特征,其特征在于观察到的器官变形并实现临床作用或决定。我们在深呼吸运动期间提出了一种用于表征膀胱表面动力学的管道。对于紧凑的形状表示,首先使用重建的时间体积来使用LDDMM框架建立专用的动态4D网状序列。然后,我们从诸如网格伸长和失真的机械参数执行器官动力学的统计表征。由于我们将器官引用作为非平面,因此我们还使用平均曲率变化为度量来量化表面演变。然而,曲率的数值计算强烈地取决于表面参数化。为了应对这一依赖性,我们采用了一种用于表面变形分析的新方法。独立于参数化并最小化测地曲线的长度,通过最小化Dirichlet能量,它使表面曲线平滑地朝向球体。 eulerian PDE方法用于从曲线缩短流中导出形状描述符。使用Laplace Beltrami操作员特征函数来计算各个运动模式之间的接口,用于球形映射。用于提取用于局部控制的模拟形状轨迹的表征相关曲线的应用演示了所提出的形状描述符的稳定性。
translated by 谷歌翻译
Humans and animals excel in combining information from multiple sensory modalities, controlling their complex bodies, adapting to growth, failures, or using tools. These capabilities are also highly desirable in robots. They are displayed by machines to some extent - yet, as is so often the case, the artificial creatures are lagging behind. The key foundation is an internal representation of the body that the agent - human, animal, or robot - has developed. In the biological realm, evidence has been accumulated by diverse disciplines giving rise to the concepts of body image, body schema, and others. In robotics, a model of the robot is an indispensable component that enables to control the machine. In this article I compare the character of body representations in biology with their robotic counterparts and relate that to the differences in performance that we observe. I put forth a number of axes regarding the nature of such body models: fixed vs. plastic, amodal vs. modal, explicit vs. implicit, serial vs. parallel, modular vs. holistic, and centralized vs. distributed. An interesting trend emerges: on many of the axes, there is a sequence from robot body models, over body image, body schema, to the body representation in lower animals like the octopus. In some sense, robots have a lot in common with Ian Waterman - "the man who lost his body" - in that they rely on an explicit, veridical body model (body image taken to the extreme) and lack any implicit, multimodal representation (like the body schema) of their bodies. I will then detail how robots can inform the biological sciences dealing with body representations and finally, I will study which of the features of the "body in the brain" should be transferred to robots, giving rise to more adaptive and resilient, self-calibrating machines.
translated by 谷歌翻译
本文提出了一种以非零速度的效果友好型捕捉对象的混合优化和学习方法。通过受约束的二次编程问题,该方法生成最佳轨迹,直至机器人和对象之间的接触点,以最小化其相对速度并减少初始影响力。接下来,生成的轨迹是由基于人类的捕捉演示的旋风动作原始词更新的,以确保围绕接口点的平稳过渡。此外,学习的人类可变刚度(HVS)被发送到机器人的笛卡尔阻抗控制器,以吸收后影响力并稳定捕获位置。进行了三个实验,以将我们的方法与固定位置阻抗控制器(FP-IC)进行比较。结果表明,所提出的方法的表现优于FP-IC,同时添加HVS可以更好地吸收影响后力。
translated by 谷歌翻译
虽然在各种应用中广泛使用刚性机器人,但它们在他们可以执行的任务中受到限制,并且在密切的人机交互中可以保持不安全。另一方面,软机器鞋面超越了刚性机器人的能力,例如与工作环境,自由度,自由度,制造成本和与环境安全互动的兼容性。本文研究了纤维增强弹性机壳(释放)作为一种特定类型的软气动致动器的行为,可用于软装饰器。创建动态集参数模型以在各种操作条件下模拟单一免费的运动,并通知控制器的设计。所提出的PID控制器使用旋转角度来控制多项式函数之后的自由到限定的步进输入或轨迹的响应来控制末端执行器的方向。另外,采用有限元分析方法,包括释放的固有非线性材料特性,精确地评估释放的各种参数和配置。该工具还用于确定模块中多个释放的工作空间,这基本上是软机械臂的构建块。
translated by 谷歌翻译
工业机器人操纵器(例如柯机)的应用可能需要在具有静态和非静态障碍物组合的环境中有效的在线运动计划。当可用的计算时间受到限制或无法完全产生解决方案时,现有的通用计划方法通常会产生较差的质量解决方案。我们提出了一个新的运动计划框架,旨在在用户定义的任务空间中运行,而不是机器人的工作空间,该框架有意将工作空间一般性交易,以计划和执行时间效率。我们的框架自动构建在线查询的轨迹库,类似于利用离线计算的以前方法。重要的是,我们的方法还提供了轨迹长度上有限的次级优势保证。关键的想法是建立称为$ \ epsilon $ -Gromov-Hausdorff近似值的近似异构体,以便在任务空间附近的点也很接近配置空间。这些边界关系进一步意味着可以平稳地串联轨迹,这使我们的框架能够解决批次查询方案,目的是找到最小长度的轨迹顺序,这些轨迹访问一组无序的目标。我们通过几种运动型配置评估了模拟框架,包括安装在移动基础上的操纵器。结果表明,我们的方法可实现可行的实时应用,并为扩展其功能提供了有趣的机会。
translated by 谷歌翻译
沿规定的任务空间路径的冗余机器人的轨迹的离线最佳规划通常分为两个连续的过程:首先,任务空间路径倒置以获得一个联合空间路径,然后,后者通过时间定律进行参数化。如果两个过程分开,它们将无法优化相同的目标函数,最终提供了次优的结果。在本文中,提出了一种统一的方法,而动态编程是基础优化技术。它的灵活性允许安装任意约束和客观功能,从而为真实系统的最佳计划提供了一个通用框架。为了证明其适用于现实世界情景,该框架是实例化的,以进行时间优势。与数值求解器相比,所提出的方法提供了基础分辨率过程的可见性,从而超出了最佳轨迹的计算以外的进一步分析。该框架的有效性已在真正的7度自由串行链上证明。还讨论和解决了与实际控制器上执行最佳轨迹相关的问题。实验表明,所提出的框架能够有效利用运动学冗余,以优化计划级别定义的性能索引,并生成可行的轨迹,这些轨迹可以在真实硬件上执行,并具有令人满意的结果。
translated by 谷歌翻译