沿规定的任务空间路径的冗余机器人的轨迹的离线最佳规划通常分为两个连续的过程:首先,任务空间路径倒置以获得一个联合空间路径,然后,后者通过时间定律进行参数化。如果两个过程分开,它们将无法优化相同的目标函数,最终提供了次优的结果。在本文中,提出了一种统一的方法,而动态编程是基础优化技术。它的灵活性允许安装任意约束和客观功能,从而为真实系统的最佳计划提供了一个通用框架。为了证明其适用于现实世界情景,该框架是实例化的,以进行时间优势。与数值求解器相比,所提出的方法提供了基础分辨率过程的可见性,从而超出了最佳轨迹的计算以外的进一步分析。该框架的有效性已在真正的7度自由串行链上证明。还讨论和解决了与实际控制器上执行最佳轨迹相关的问题。实验表明,所提出的框架能够有效利用运动学冗余,以优化计划级别定义的性能索引,并生成可行的轨迹,这些轨迹可以在真实硬件上执行,并具有令人满意的结果。
translated by 谷歌翻译
可以使用几种技术来解决沿规定路径的最佳运动计划,但是大多数技术没有考虑到与环境接触时最终效用器所施加的扳手。当无法获得环境的动态模型时,就不存在合并方法来考虑相互作用的效果。无论要优化的特定性能指数如何,本文都提出了一种策略,将外部扳手包括在最佳计划算法中,考虑到任务规格。此过程是针对最小时间轨迹实例化的,并在接纳控制下执行交互任务的真实机器人进行了验证。结果证明,最终效应器扳手的包含会影响计划的轨迹,实际上改变了操纵器的动态能力。
translated by 谷歌翻译
The increasing interest in autonomous robots with a high number of degrees of freedom for industrial applications and service robotics demands control algorithms to handle multiple tasks as well as hard constraints efficiently. This paper presents a general framework in which both kinematic (velocity- or acceleration-based) and dynamic (torque-based) control of redundant robots are handled in a unified fashion. The framework allows for the specification of redundancy resolution problems featuring a hierarchy of arbitrary (equality and inequality) constraints, arbitrary weighting of the control effort in the cost function and an additional input used to optimize possibly remaining redundancy. To solve such problems, a generalization of the Saturation in the Null Space (SNS) algorithm is introduced, which extends the original method according to the features required by our general control framework. Variants of the developed algorithm are presented, which ensure both efficient computation and optimality of the solution. Experiments on a KUKA LBRiiwa robotic arm, as well as simulations with a highly redundant mobile manipulator are reported.
translated by 谷歌翻译
这项工作为过度分配的平台提供了计算轻量级运动计划器。为此,定义了针对具有多个运动链的移动平台的一般状态空间模型,该模型考虑了非线性和约束。提出的运动计划者基于一种顺序多阶段方法,该方法利用了每个步骤的温暖起步。首先,使用快速行进方法生成全球最佳和平滑的2D/3D轨迹。该轨迹作为温暖的开端馈送到一个顺序线性二次调节器,该线性二次调节器能够生成一个最佳运动计划,而无需为所有平台执行器限制。最后,考虑到模型中定义的约束,生成了可行的运动计划。在这方面,再次采用了顺序线性二次调节器,以先前生成的不受限制的运动计划作为温暖的开始。这种新颖的方法已被部署到欧洲航天局的Exomars测试漫游车中。这款漫游者是具有机器人臂的可容纳Ackermann能力的行星勘探测试床。进行了几项实验,表明所提出的方法加快了计算时间的速度,增加了火星样品检索任务的成功率,可以将其视为过度插入移动平台的代表性用例。
translated by 谷歌翻译
在腿部机器人技术中,计划和执行敏捷的机动演习一直是一个长期的挑战。它需要实时得出运动计划和本地反馈政策,以处理动力学动量的非物质。为此,我们提出了一个混合预测控制器,该控制器考虑了机器人的致动界限和全身动力学。它将反馈政策与触觉信息相结合,以在本地预测未来的行动。由于采用可行性驱动的方法,它在几毫秒内收敛。我们的预测控制器使Anymal机器人能够在现实的场景中生成敏捷操作。关键要素是跟踪本地反馈策略,因为与全身控制相反,它们达到了所需的角动量。据我们所知,我们的预测控制器是第一个处理驱动限制,生成敏捷的机动操作以及执行低级扭矩控制的最佳反馈策略,而无需使用单独的全身控制器。
translated by 谷歌翻译
在粗糙的地形上的动态运动需要准确的脚部放置,避免碰撞以及系统的动态不足的计划。在存在不完美且常常不完整的感知信息的情况下,可靠地优化此类动作和互动是具有挑战性的。我们提出了一个完整的感知,计划和控制管道,可以实时优化机器人所有自由度的动作。为了减轻地形所带来的数值挑战,凸出不平等约束的顺序被提取为立足性可行性的局部近似值,并嵌入到在线模型预测控制器中。每个高程映射预先计算了步骤性分类,平面分割和签名的距离场,以最大程度地减少优化过程中的计算工作。多次射击,实时迭代和基于滤波器的线路搜索的组合用于可靠地以高速率解决该法式问题。我们在模拟中的间隙,斜率和踏上石头的情况下验证了所提出的方法,并在Anymal四倍的平台上进行实验,从而实现了最新的动态攀登。
translated by 谷歌翻译
在腿的运动中重新规划对于追踪所需的用户速度,在适应地形并拒绝外部干扰的同时至关重要。在这项工作中,我们提出并测试了实验中的实时非线性模型预测控制(NMPC),用于腿部机器人,以实现各种地形上的动态运动。我们引入了一种基于移动性的标准来定义NMPC成本,增强了二次机器人的运动,同时最大化腿部移动性并提高对地形特征的适应。我们的NMPC基于实时迭代方案,使我们能够以25美元的价格重新计划在线,\ Mathrm {Hz} $ 2 $ 2 $ 2美元的预测地平线。我们使用在质量框架中心中定义的单个刚体动态模型,以提高计算效率。在仿真中,测试NMPC以横穿一组不同尺寸的托盘,走进V形烟囱,并在崎岖的地形上招揽。在真实实验中,我们展示了我们的NMPC与移动功能的有效性,使IIT为87美元\,\ Mathrm {kg} $四分之一的机器人HIQ,以实现平坦地形上的全方位步行,横穿静态托盘,并适应在散步期间重新定位托盘。
translated by 谷歌翻译
工业机器人操纵器(例如柯机)的应用可能需要在具有静态和非静态障碍物组合的环境中有效的在线运动计划。当可用的计算时间受到限制或无法完全产生解决方案时,现有的通用计划方法通常会产生较差的质量解决方案。我们提出了一个新的运动计划框架,旨在在用户定义的任务空间中运行,而不是机器人的工作空间,该框架有意将工作空间一般性交易,以计划和执行时间效率。我们的框架自动构建在线查询的轨迹库,类似于利用离线计算的以前方法。重要的是,我们的方法还提供了轨迹长度上有限的次级优势保证。关键的想法是建立称为$ \ epsilon $ -Gromov-Hausdorff近似值的近似异构体,以便在任务空间附近的点也很接近配置空间。这些边界关系进一步意味着可以平稳地串联轨迹,这使我们的框架能够解决批次查询方案,目的是找到最小长度的轨迹顺序,这些轨迹访问一组无序的目标。我们通过几种运动型配置评估了模拟框架,包括安装在移动基础上的操纵器。结果表明,我们的方法可实现可行的实时应用,并为扩展其功能提供了有趣的机会。
translated by 谷歌翻译
使用逆动力学的最佳控制(OC)提供了数值益处,例如粗略优化,更便宜的衍生物计算和高收敛速率。但是,为了利用腿部机器人的模型预测控制(MPC)中的这些好处,有效处理其大量平等约束至关重要。为此,我们首先(i)提出了一种新的方法来处理基于NullSpace参数化的平等约束。我们的方法可以适当地平衡最优性,以及动态和平等构成可行性,从而增加了吸引到良好本地最小值的盆地。为此,我们(ii)(ii)通过合并功能功能来调整以可行性为导向的搜索。此外,我们介绍了(iii)的(iii)对考虑任意执行器模型的反向动力学的凝结公式。我们还基于感知运动框架中基于反向动力学的新型MPC(iv)。最后,我们提出(v)最佳控制与正向动力学和逆动力学的理论比较,并通过数值评估。我们的方法使逆动力学MPC在硬件上首次应用,从而在Anymal机器人上进行了最新的动态攀登。我们在广泛的机器人问题上进行基准测试,并产生敏捷和复杂的动作。我们显示了我们的无空间分辨率和凝结配方的计算降低(高达47.3%)。我们通过以高收敛速率解决粗略优化问题(最多10 Hz离散化)来提供方法的益处。我们的算法在Crocoddyl内公开可用。
translated by 谷歌翻译
为了经济部署机器人操纵器,机器人动作的编程和执行必须迅速。为此,我们提出了一种基于新颖的,基于约束的方法,以直观地指定顺序操作任务,并为这种任务规范计算时间优势的机器人运动。我们的方法遵循基于约束的任务规范的思想,目的是建立最小和以对象为中心的任务描述,该描述在很大程度上与基础机器人运动学无关。我们将此任务描述转换为非线性优化问题。通过解决此问题,我们获得了(本地)最佳的机器人运动,而不仅仅是用于单个运动,还用于整个操作序列。我们在一系列涉及五个不同的机器人模型(包括高度冗余的移动操纵器)的实验中证明了我们方法的功能。
translated by 谷歌翻译
由于机器人动力学中的固有非线性,腿部机器人全身动作的在线计划具有挑战性。在这项工作中,我们提出了一个非线性MPC框架,该框架可以通过有效利用机器人动力学结构来在线生成全身轨迹。Biconmp用于在真正的四倍机器人上生成各种环状步态,其性能在不同的地形上进行了评估,对抗不同步态之间的不可预见的推动力并在线过渡。此外,提出了双孔在机器人上产生非平凡无环的全身动态运动的能力。同样的方法也被用来在人体机器人(TALOS)上产生MPC的各种动态运动,并在模拟中产生另一个四倍的机器人(Anymal)。最后,报告并讨论了对计划范围和频率对非线性MPC框架的影响的广泛经验分析。
translated by 谷歌翻译
本文提出了一个基于抽样的运动计划者,该计划将RRT*(迅速探索随机树星)集成到预计运动原始图的数据库中,以减轻其计算负载,并允许在动态或部分已知的环境中进行运动计划。该数据库是通过在某些网格空间中考虑一组初始状态和最终状态对来构建的,并确定每个对与系统动力学和约束兼容的最佳轨迹,同时最小化成本。通过在网格状态空间中提取样品并在数据库中选择将其连接到现有节点的数据库中的最佳无障碍运动原始性,将节点逐渐添加到RRT*算法中可行轨迹树中的节点。如果可以通过无障碍的运动原始的原始较低的成本从新的采样状态达到一些节点,则树将重新接线。因此,运动计划的计算更密集的部分被移至数据库构建的初步离线阶段(以网格造成的某些性能退化为代价。可以对网格分辨率进行调整,以便在数据库的最优性和大小之间妥协。由于网格分辨率为零,并且采样状态的数量增长到无穷大,因此规划器被证明是渐近的最佳选择。
translated by 谷歌翻译
室内运动计划的重点是解决通过混乱环境导航代理的问题。迄今为止,在该领域已经完成了很多工作,但是这些方法通常无法找到计算廉价的在线路径计划和路径最佳之间的最佳平衡。除此之外,这些作品通常证明是单一启动单目标世界的最佳性。为了应对这些挑战,我们为在未知室内环境中进行导航的多个路径路径计划者和控制器堆栈,在该环境中,路点将目标与机器人必须在达到目标之前必须穿越的中介点一起。我们的方法利用全球规划师(在任何瞬间找到下一个最佳航路点),本地规划师(计划通往特定航路点的路径)以及自适应模型预测性控制策略(用于强大的系统控制和更快的操作) 。我们在一组随机生成的障碍图,中间航路点和起始目标对上评估了算法,结果表明计算成本显着降低,具有高度准确性和可靠的控制。
translated by 谷歌翻译
这是关于操纵器差异运动学教程的第二篇也是最后一篇文章。在第一部分中,我们描述了一种使用基本变换序列(ET)建模运动学的方法,然后在制定前向运动学和操纵器Jacobian之前。然后,我们描述了操纵器Jacobian的一些基本应用,包括分辨率运动控制(RRMC),逆运动学(IK)和一些操纵器性能指标。在本文中,我们制定了二阶差异运动学,从而定义了操纵器Hessian。然后,我们描述了差异运动学的分析形式,这对于动态应用至关重要。随后,我们为高阶导数提供了一般公式。我们考虑的第一个应用程序是高级速度控制。在本节中,我们将解决的速率运动控制扩展到执行子任务,同时仍然实现目标,然后重新定义算法作为二次程序,以实现更大的灵活性和其他约束。然后,我们再次看一下数值逆运动学,重点是增加约束。最后,我们分析了操纵者黑森州如何帮助逃脱奇异性。我们提供了Jupyter笔记本,以陪同本教程中的每个部分。这些笔记本是用Python代码编写的,并使用python的机器人工具箱,以及Swift Simulator提供算法的示例和实现。虽然不是绝对必要的,但对于最吸引人和信息丰富的经验,我们建议在阅读本文时使用Jupyter笔记本。笔记本和设置说明可以在https://github.com/jhavl/dkt上访问。
translated by 谷歌翻译
Solving the analytical inverse kinematics (IK) of redundant manipulators in real time is a difficult problem in robotics since its solution for a given target pose is not unique. Moreover, choosing the optimal IK solution with respect to application-specific demands helps to improve the robustness and to increase the success rate when driving the manipulator from its current configuration towards a desired pose. This is necessary, especially in high-dynamic tasks like catching objects in mid-flights. To compute a suitable target configuration in the joint space for a given target pose in the trajectory planning context, various factors such as travel time or manipulability must be considered. However, these factors increase the complexity of the overall problem which impedes real-time implementation. In this paper, a real-time framework to compute the analytical inverse kinematics of a redundant robot is presented. To this end, the analytical IK of the redundant manipulator is parameterized by so-called redundancy parameters, which are combined with a target pose to yield a unique IK solution. Most existing works in the literature either try to approximate the direct mapping from the desired pose of the manipulator to the solution of the IK or cluster the entire workspace to find IK solutions. In contrast, the proposed framework directly learns these redundancy parameters by using a neural network (NN) that provides the optimal IK solution with respect to the manipulability and the closeness to the current robot configuration. Monte Carlo simulations show the effectiveness of the proposed approach which is accurate and real-time capable ($\approx$ \SI{32}{\micro\second}) on the KUKA LBR iiwa 14 R820.
translated by 谷歌翻译
解决逆运动学问题是针对清晰机器人的运动计划,控制和校准的基本挑战。这些机器人的运动学模型通常通过关节角度进行参数化,从而在机器人构型和最终效果姿势之间产生复杂的映射。或者,可以使用机器人附加点之间的不变距离来表示运动学模型和任务约束。在本文中,我们将基于距离的逆运动学的等效性和大量铰接式机器人和任务约束的距离几何问题进行形式化。与以前的方法不同,我们使用距离几何形状和低级别矩阵完成之间的连接来通过局部优化完成部分欧几里得距离矩阵来找到逆运动学解决方案。此外,我们用固定级革兰氏矩阵的Riemannian歧管来参数欧几里得距离矩阵的空间,从而使我们能够利用各种成熟的Riemannian优化方法。最后,我们表明,绑定的平滑性可用于生成知情的初始化,而无需大量的计算开销,从而改善收敛性。我们证明,我们的逆运动求解器比传统技术获得更高的成功率,并且在涉及许多工作区约束的问题上大大优于它们。
translated by 谷歌翻译
本文着重于影响弹性的移动机器人的碰撞运动计划和控制的新兴范式转移,并开发了一个统一的层次结构框架,用于在未知和部分观察的杂物空间中导航。在较低级别上,我们开发了一种变形恢复控制和轨迹重新启动策略,该策略处理可能在本地运行时发生的碰撞。低级系统会积极检测碰撞(通过内部内置的移动机器人上的嵌入式霍尔效应传感器),使机器人能够从其内部恢复,并在本地调整后影响后的轨迹。然后,在高层,我们提出了一种基于搜索的计划算法,以确定如何最好地利用潜在的碰撞来改善某些指标,例如控制能量和计算时间。我们的方法建立在A*带有跳跃点的基础上。我们生成了一种新颖的启发式功能,并进行了碰撞检查和调整技术,从而使A*算法通过利用和利用可能的碰撞来更快地收敛到达目标。通过将全局A*算法和局部变形恢复和重新融合策略以及该框架的各个组件相结合而生成的整体分层框架在模拟和实验中都经过了广泛的测试。一项消融研究借鉴了与基于搜索的最先进的避免碰撞计划者(用于整体框架)的链接,以及基于搜索的避免碰撞和基于采样的碰撞 - 碰撞 - 全球规划师(对于更高的较高的碰撞 - 等级)。结果证明了我们的方法在未知环境中具有碰撞的运动计划和控制的功效,在2D中运行的一类撞击弹性机器人具有孤立的障碍物。
translated by 谷歌翻译
本文提出了一种实时模型预测控制(MPC)方案,以使用有限时间范围内的机器人执行多个任务。在工业机器人应用中,我们必须仔细考虑避免关节位置,速度和扭矩极限的多个限制。此外,无奇异性和平稳的动作需要连续,安全地执行任务。我们没有制定非线性MPC问题,而是使用沿层次控制器生成的名义轨迹线性线性的运动和动态模型来设计线性MPC问题。这些线性MPC问题可通过使用二次编程来解决;因此,我们大大减少了提出的MPC框架的计算时间,因此所得更新频率高于1 kHz。与基于操作空间控制(OSC)的基线相比,我们提出的MPC框架在减少任务跟踪错误方面更有效。我们在数值模拟和使用工业操纵器的实际实验中验证方法。更具体地说,我们将方法部署在两个实用方案中用于机器人物流:1)控制携带重载的机器人,同时考虑扭矩限制,以及2)控制最终效果,同时避免奇异性。
translated by 谷歌翻译
与单个机器人相比,多个移动操纵器在需要移动性和灵活性的任务中表现出优势,尤其是在操纵/运输笨重的物体时。当对象和操纵器紧密地连接时,将形成闭合链,整个系统的运动将被限制在较低的歧管上。但是,当前对多机器人运动计划的研究并未完全考虑整个系统的形成,移动操纵器的冗余以及环境中的障碍,这使得任务具有挑战性。因此,本文提出了一个层次结构框架,以有效地解决上述挑战,其中集中式层计划离线运动的运动和分散层独立地实时探索每个机器人的冗余。此外,在集中式层中保证了封闭链,避免障碍物和地层限制的下限,其他计划者无法同时实现。此外,代表编队约束的分布的能力图可用于加快两层。仿真和实验结果都表明,所提出的框架的表现明显优于基准规划师。该系统可以在混乱的环境中绕过或跨越障碍物,并且该框架可以应用于不同数量的异质移动操纵器。
translated by 谷歌翻译
Force modulation of robotic manipulators has been extensively studied for several decades. However, it is not yet commonly used in safety-critical applications due to a lack of accurate interaction contact modeling and weak performance guarantees - a large proportion of them concerning the modulation of interaction forces. This study presents a high-level framework for simultaneous trajectory optimization and force control of the interaction between a manipulator and soft environments, which is prone to external disturbances. Sliding friction and normal contact force are taken into account. The dynamics of the soft contact model and the manipulator are simultaneously incorporated in a trajectory optimizer to generate desired motion and force profiles. A constrained optimization framework based on Alternative Direction Method of Multipliers (ADMM) has been employed to efficiently generate real-time optimal control inputs and high-dimensional state trajectories in a Model Predictive Control fashion. Experimental validation of the model performance is conducted on a soft substrate with known material properties using a Cartesian space force control mode. Results show a comparison of ground truth and real-time model-based contact force and motion tracking for multiple Cartesian motions in the valid range of the friction model. It is shown that a contact model-based motion planner can compensate for frictional forces and motion disturbances and improve the overall motion and force tracking accuracy. The proposed high-level planner has the potential to facilitate the automation of medical tasks involving the manipulation of compliant, delicate, and deformable tissues.
translated by 谷歌翻译