为了经济部署机器人操纵器,机器人动作的编程和执行必须迅速。为此,我们提出了一种基于新颖的,基于约束的方法,以直观地指定顺序操作任务,并为这种任务规范计算时间优势的机器人运动。我们的方法遵循基于约束的任务规范的思想,目的是建立最小和以对象为中心的任务描述,该描述在很大程度上与基础机器人运动学无关。我们将此任务描述转换为非线性优化问题。通过解决此问题,我们获得了(本地)最佳的机器人运动,而不仅仅是用于单个运动,还用于整个操作序列。我们在一系列涉及五个不同的机器人模型(包括高度冗余的移动操纵器)的实验中证明了我们方法的功能。
translated by 谷歌翻译
The increasing interest in autonomous robots with a high number of degrees of freedom for industrial applications and service robotics demands control algorithms to handle multiple tasks as well as hard constraints efficiently. This paper presents a general framework in which both kinematic (velocity- or acceleration-based) and dynamic (torque-based) control of redundant robots are handled in a unified fashion. The framework allows for the specification of redundancy resolution problems featuring a hierarchy of arbitrary (equality and inequality) constraints, arbitrary weighting of the control effort in the cost function and an additional input used to optimize possibly remaining redundancy. To solve such problems, a generalization of the Saturation in the Null Space (SNS) algorithm is introduced, which extends the original method according to the features required by our general control framework. Variants of the developed algorithm are presented, which ensure both efficient computation and optimality of the solution. Experiments on a KUKA LBRiiwa robotic arm, as well as simulations with a highly redundant mobile manipulator are reported.
translated by 谷歌翻译
尽管移动操作在工业和服务机器人技术方面都重要,但仍然是一个重大挑战,因为它需要将最终效应轨迹的无缝整合与导航技能以及对长匹马的推理。现有方法难以控制大型配置空间,并导航动态和未知环境。在先前的工作中,我们建议将移动操纵任务分解为任务空间中最终效果的简化运动生成器,并将移动设备分解为训练有素的强化学习代理,以说明移动基础的运动基础,以说明运动的运动可行性。在这项工作中,我们引入了移动操作的神经导航(n $^2 $ m $^2 $),该导航将这种分解扩展到复杂的障碍环境,并使其能够解决现实世界中的广泛任务。最终的方法可以在未探索的环境中执行看不见的长马任务,同时立即对动态障碍和环境变化做出反应。同时,它提供了一种定义新的移动操作任务的简单方法。我们证明了我们提出的方法在多个运动学上多样化的移动操纵器上进行的广泛模拟和现实实验的能力。代码和视频可在http://mobile-rl.cs.uni-freiburg.de上公开获得。
translated by 谷歌翻译
沿规定的任务空间路径的冗余机器人的轨迹的离线最佳规划通常分为两个连续的过程:首先,任务空间路径倒置以获得一个联合空间路径,然后,后者通过时间定律进行参数化。如果两个过程分开,它们将无法优化相同的目标函数,最终提供了次优的结果。在本文中,提出了一种统一的方法,而动态编程是基础优化技术。它的灵活性允许安装任意约束和客观功能,从而为真实系统的最佳计划提供了一个通用框架。为了证明其适用于现实世界情景,该框架是实例化的,以进行时间优势。与数值求解器相比,所提出的方法提供了基础分辨率过程的可见性,从而超出了最佳轨迹的计算以外的进一步分析。该框架的有效性已在真正的7度自由串行链上证明。还讨论和解决了与实际控制器上执行最佳轨迹相关的问题。实验表明,所提出的框架能够有效利用运动学冗余,以优化计划级别定义的性能索引,并生成可行的轨迹,这些轨迹可以在真实硬件上执行,并具有令人满意的结果。
translated by 谷歌翻译
We present a generalised architecture for reactive mobile manipulation while a robot's base is in motion toward the next objective in a high-level task. By performing tasks on-the-move, overall cycle time is reduced compared to methods where the base pauses during manipulation. Reactive control of the manipulator enables grasping objects with unpredictable motion while improving robustness against perception errors, environmental disturbances, and inaccurate robot control compared to open-loop, trajectory-based planning approaches. We present an example implementation of the architecture and investigate the performance on a series of pick and place tasks with both static and dynamic objects and compare the performance to baseline methods. Our method demonstrated a real-world success rate of over 99%, failing in only a single trial from 120 attempts with a physical robot system. The architecture is further demonstrated on other mobile manipulator platforms in simulation. Our approach reduces task time by up to 48%, while also improving reliability, gracefulness, and predictability compared to existing architectures for mobile manipulation. See https://benburgesslimerick.github.io/ManipulationOnTheMove for supplementary materials.
translated by 谷歌翻译
任务和运动计划在解决严格的顺序操作问题方面取得了重大进展。但是,此类计划公式与反应性执行的控制方法之间存在差距。在本文中,我们提出了一种模型预测控制方法,该方法专门执行一个约束序列,该方法对应于TAMP计划的离散决策顺序。我们将总体控制问题分解为三个子问题(解决顺序航路点,其时序和一个简短的水平路径),每个问题是每个MPC循环中在线求解的一个非线性程序。最终的控制策略可以解释约束的长期相互依存关系,并通过所有约束来反应地计划正时正常的过渡。我们还建议在无法实现当前阶段的运行限制时进行回溯,从而导致一种流利的重新定位行为,这对实验者的扰动和干扰是可靠的。
translated by 谷歌翻译
可以使用几种技术来解决沿规定路径的最佳运动计划,但是大多数技术没有考虑到与环境接触时最终效用器所施加的扳手。当无法获得环境的动态模型时,就不存在合并方法来考虑相互作用的效果。无论要优化的特定性能指数如何,本文都提出了一种策略,将外部扳手包括在最佳计划算法中,考虑到任务规格。此过程是针对最小时间轨迹实例化的,并在接纳控制下执行交互任务的真实机器人进行了验证。结果证明,最终效应器扳手的包含会影响计划的轨迹,实际上改变了操纵器的动态能力。
translated by 谷歌翻译
在粗糙的地形上的动态运动需要准确的脚部放置,避免碰撞以及系统的动态不足的计划。在存在不完美且常常不完整的感知信息的情况下,可靠地优化此类动作和互动是具有挑战性的。我们提出了一个完整的感知,计划和控制管道,可以实时优化机器人所有自由度的动作。为了减轻地形所带来的数值挑战,凸出不平等约束的顺序被提取为立足性可行性的局部近似值,并嵌入到在线模型预测控制器中。每个高程映射预先计算了步骤性分类,平面分割和签名的距离场,以最大程度地减少优化过程中的计算工作。多次射击,实时迭代和基于滤波器的线路搜索的组合用于可靠地以高速率解决该法式问题。我们在模拟中的间隙,斜率和踏上石头的情况下验证了所提出的方法,并在Anymal四倍的平台上进行实验,从而实现了最新的动态攀登。
translated by 谷歌翻译
由于机器人动力学中的固有非线性,腿部机器人全身动作的在线计划具有挑战性。在这项工作中,我们提出了一个非线性MPC框架,该框架可以通过有效利用机器人动力学结构来在线生成全身轨迹。Biconmp用于在真正的四倍机器人上生成各种环状步态,其性能在不同的地形上进行了评估,对抗不同步态之间的不可预见的推动力并在线过渡。此外,提出了双孔在机器人上产生非平凡无环的全身动态运动的能力。同样的方法也被用来在人体机器人(TALOS)上产生MPC的各种动态运动,并在模拟中产生另一个四倍的机器人(Anymal)。最后,报告并讨论了对计划范围和频率对非线性MPC框架的影响的广泛经验分析。
translated by 谷歌翻译
用于移动操作的机器人平台需要满足许多对许多现实世界应用的两个矛盾要求:需要紧凑的基础才能通过混乱的室内环境导航,而支撑需要足够大以防止翻滚或小费,尤其是在快速操纵期间有效载荷或与环境有力互动的操作。本文提出了一种新颖的机器人设计,该设计通过多功能足迹来满足这两种要求。当操纵重物时,它可以将其足迹重新配置为狭窄的配置。此外,其三角形配置可通过防止支撑开关来在不平坦的地面上进行高精度任务。提出了一种模型预测控制策略,该策略统一计划和控制,以同时导航,重新配置和操纵。它将任务空间目标转换为新机器人的全身运动计划。提出的设计已通过硬件原型进行了广泛的测试。足迹重新配置几乎可以完全消除操纵引起的振动。控制策略在实验室实验和现实世界的施工任务中被证明有效。
translated by 谷歌翻译
工业机器人操纵器(例如柯机)的应用可能需要在具有静态和非静态障碍物组合的环境中有效的在线运动计划。当可用的计算时间受到限制或无法完全产生解决方案时,现有的通用计划方法通常会产生较差的质量解决方案。我们提出了一个新的运动计划框架,旨在在用户定义的任务空间中运行,而不是机器人的工作空间,该框架有意将工作空间一般性交易,以计划和执行时间效率。我们的框架自动构建在线查询的轨迹库,类似于利用离线计算的以前方法。重要的是,我们的方法还提供了轨迹长度上有限的次级优势保证。关键的想法是建立称为$ \ epsilon $ -Gromov-Hausdorff近似值的近似异构体,以便在任务空间附近的点也很接近配置空间。这些边界关系进一步意味着可以平稳地串联轨迹,这使我们的框架能够解决批次查询方案,目的是找到最小长度的轨迹顺序,这些轨迹访问一组无序的目标。我们通过几种运动型配置评估了模拟框架,包括安装在移动基础上的操纵器。结果表明,我们的方法可实现可行的实时应用,并为扩展其功能提供了有趣的机会。
translated by 谷歌翻译
由于有限的有效载荷能力有限,因此在山区环境中的救援任务几乎无法通过标准的腿部机器人或飞行机器人来实现。我们提出了一个新颖的概念,用于绳索攀岩机器人,该机器人可以谈判最新的斜坡并承担重载的有效载荷。机器人通过绳子固定在山上,并配备了一条腿来推向山上并开始跳跃动作。在跳跃之间,提升机被用来绕/放开绳索,以垂直移动并影响横向运动。这种简单的(但有效)的两倍致动,使系统能够实现高安全性和能源效率。确实,绳索可以防止机器人掉落,同时弥补了大部分重量,从而大大减少了腿部执行器所需的努力。我们还提出了一种最佳控制策略,以生成克服障碍的点对点轨迹。由于使用了自定义简化的机器人模型,我们可以实现快速计算时间($ <$ 1 s)。我们使用完整的机器人模型验证了凉亭模拟中生成的最佳运动,显示了提出的方法的有效性,并确认了我们概念的兴趣。最后,我们进行了可及性分析,表明可实现的目标区域受到脚壁接触的摩擦特性的强烈影响。
translated by 谷歌翻译
这项工作为过度分配的平台提供了计算轻量级运动计划器。为此,定义了针对具有多个运动链的移动平台的一般状态空间模型,该模型考虑了非线性和约束。提出的运动计划者基于一种顺序多阶段方法,该方法利用了每个步骤的温暖起步。首先,使用快速行进方法生成全球最佳和平滑的2D/3D轨迹。该轨迹作为温暖的开端馈送到一个顺序线性二次调节器,该线性二次调节器能够生成一个最佳运动计划,而无需为所有平台执行器限制。最后,考虑到模型中定义的约束,生成了可行的运动计划。在这方面,再次采用了顺序线性二次调节器,以先前生成的不受限制的运动计划作为温暖的开始。这种新颖的方法已被部署到欧洲航天局的Exomars测试漫游车中。这款漫游者是具有机器人臂的可容纳Ackermann能力的行星勘探测试床。进行了几项实验,表明所提出的方法加快了计算时间的速度,增加了火星样品检索任务的成功率,可以将其视为过度插入移动平台的代表性用例。
translated by 谷歌翻译
我们为双级轨迹优化提供了一个框架,其中系统的动态被编码为对受约束优化问题的解决方案,并且将该较低级别问题的平滑梯度传递给上限轨迹优化器。基于优化的动态表示可实现约束处理,附加变量和非平滑行为,以便远离上层优化器,并允许经典的无约束优化器合成用于更复杂的系统的轨迹。我们提供了一种路径,以便有效地评估受限的动态,并利用隐式功能定理来计算此表示的平滑梯度。我们通过从机器人,航空航天和操纵域建模系统展示了框架,包括:杂志,带有联合限制,卡车杆受到库仑摩擦,Raibert Hopper,火箭落地的推力限制,以及基于优化的动态的平面推送任务然后使用迭代LQR优化轨迹。
translated by 谷歌翻译
为了使腿部机器人执行敏捷,高度动态和接触率丰富的动作,需要对未经线性动力学的启动不足的复合系统进行全身轨迹计算。在这项工作中,我们介绍了Horizon的动手应用,这是一种针对机器人系统量身定制的新型开源框架,可提供一系列工具来简化动态运动的生成。Horizon在涉及多个机器人平台的广泛行为上进行了测试:我们介绍了其构建块,并描述了使用其直观和直接的API生成三个复杂动作的完整过程。
translated by 谷歌翻译
我们提出了一个机器人学习和计划框架,该框架以最少的共同努力生成有效的工具使用策略,能够处理不同于培训的物体。利用有限元方法(FEM)基于模拟器,该模拟器在观察到的刀具使用事件给定的细粒度,连续的视觉和物理效果中,通过提出的迭代迭代符号深化回归(IDSR)算法来识别促成效果的基本物理特性。我们进一步设计了一种基于最佳控制的运动计划方案,以整合机器人和特定于工具的运动学和动力学,以产生有效的轨迹,从而实现学习性能。在模拟中,我们证明了所提出的框架可以产生更有效的工具使用策略,这与在两个示例任务中观察到的框架截然不同。
translated by 谷歌翻译
在许多无人机应用中,为空中机器人计划的时间轨迹至关重要,例如救援任务和包装交付,这些应用程序近年来已经广泛研究。但是,它仍然涉及一些挑战,尤其是在将特殊任务要求纳入计划以及空中机器人的动态方面。在这项工作中,我们研究了一种案例,使空中操纵器应以时间优势的方式从移动的移动机器人中移交一个包裹。我们没有手动设置方法轨迹,这使得很难确定在动态范围内完成所需任务的最佳总行进时间,而是提出了一个优化框架,该框架将离散的力学和互补性约束(DMCC)结合在一起。在提出的框架中,系统动力学受到离散的拉格朗日力学的约束,该机械也根据我们的实验提供了可靠的估计结果。移交机会是根据所需的互补限制自动确定和安排的。最后,通过使用我们的自设计的空中操纵器进行数值模拟和硬件实验来验证所提出的框架的性能。
translated by 谷歌翻译
本文着重于影响弹性的移动机器人的碰撞运动计划和控制的新兴范式转移,并开发了一个统一的层次结构框架,用于在未知和部分观察的杂物空间中导航。在较低级别上,我们开发了一种变形恢复控制和轨迹重新启动策略,该策略处理可能在本地运行时发生的碰撞。低级系统会积极检测碰撞(通过内部内置的移动机器人上的嵌入式霍尔效应传感器),使机器人能够从其内部恢复,并在本地调整后影响后的轨迹。然后,在高层,我们提出了一种基于搜索的计划算法,以确定如何最好地利用潜在的碰撞来改善某些指标,例如控制能量和计算时间。我们的方法建立在A*带有跳跃点的基础上。我们生成了一种新颖的启发式功能,并进行了碰撞检查和调整技术,从而使A*算法通过利用和利用可能的碰撞来更快地收敛到达目标。通过将全局A*算法和局部变形恢复和重新融合策略以及该框架的各个组件相结合而生成的整体分层框架在模拟和实验中都经过了广泛的测试。一项消融研究借鉴了与基于搜索的最先进的避免碰撞计划者(用于整体框架)的链接,以及基于搜索的避免碰撞和基于采样的碰撞 - 碰撞 - 全球规划师(对于更高的较高的碰撞 - 等级)。结果证明了我们的方法在未知环境中具有碰撞的运动计划和控制的功效,在2D中运行的一类撞击弹性机器人具有孤立的障碍物。
translated by 谷歌翻译
Teideration为人类运营商提供了一种方法,以引导机器人在完全自治挑战或需要直接人类干预的情况下引导机器人。它也可以是教授机器人的重要工具,以便稍后实现自主行为。协同机器人武器和虚拟现实(VR)设备的可用性增加了充足的机会,用于开发新颖的无电术方法。由于机器人武器通常与人的武器相比,因此实时地将人类动作映射到机器人并不琐碎。此外,人类操作员可以将机器人手臂转向奇点或其工作空间限制,这可能导致不希望的行为。这进一步强调了多个机器人的编排。在本文中,我们提出了一个针对多臂有效载荷操作的VR接口,其可以与实时输入运动密切匹配。允许用户操纵有效载荷,而不是将它们的动作映射到各个武器,我们能够同时引导多个协作臂。通过释放单一的自由度,并通过使用本地优化方法,我们可以提高每个ARM的可操纵性指数,这反过来让我们避免运动奇点和工作空间限制。我们将我们的方法应用于预定义的轨迹以及不同机器人臂上的实时遥通,并在终端效应器位置误差和相关联合运动指标方面进行比较。
translated by 谷歌翻译
This paper presents a new method for integrated time-optimal routing and trajectory optimization of multirotor unmanned aerial vehicles (UAVs). Our approach extends the well-known Traveling Salesman Problem by accounting for the limited maneuverability of the UAVs due to their kinematic properties. To this end, we allow each waypoint to be traversed with a discretized velocity as well as a discretized flight direction and compute time-optimal trajectories to determine the travel time costs for each edge. We refer to this novel optimization problem as the Trajectory-based Traveling Salesman Problem (TBTSP). The results show that compared to a state-of-the-art approach for Traveling Salesman Problems with kinematic restrictions of UAVs, we can decrease mission duration by up to 15\%.
translated by 谷歌翻译