在本文中,我们提出了一种学习稳定的动力学系统的方法,该系统在里曼尼亚歧管上不断发展。该方法利用数据效率的程序来学习差异转换,该过程将简单的稳定动力系统映射到复杂的机器人技能上。通过从差异几何形状中利用数学工具,该方法可确保学习的技能满足基础歧管所施加的几何约束,例如用于方向和SPD的刚度矩阵,同时将逆转性保留到给定的目标。首先在公共基准上的模拟中测试了所提出的方法,该方法通过将笛卡尔数据投射到UQ和SPD歧管中,并与现有方法进行了比较。除了评估公共基准测试的方法外,还对在不同条件下进行瓶子的真正机器人进行了几项实验,并与人类操作员合作进行了钻井任务。评估在学习准确性和任务适应能力方面显示出令人鼓舞的结果。
translated by 谷歌翻译
Dexterous and autonomous robots should be capable of executing elaborated dynamical motions skillfully. Learning techniques may be leveraged to build models of such dynamic skills. To accomplish this, the learning model needs to encode a stable vector field that resembles the desired motion dynamics. This is challenging as the robot state does not evolve on a Euclidean space, and therefore the stability guarantees and vector field encoding need to account for the geometry arising from, for example, the orientation representation. To tackle this problem, we propose learning Riemannian stable dynamical systems (RSDS) from demonstrations, allowing us to account for different geometric constraints resulting from the dynamical system state representation. Our approach provides Lyapunov-stability guarantees on Riemannian manifolds that are enforced on the desired motion dynamics via diffeomorphisms built on neural manifold ODEs. We show that our Riemannian approach makes it possible to learn stable dynamical systems displaying complicated vector fields on both illustrative examples and real-world manipulation tasks, where Euclidean approximations fail.
translated by 谷歌翻译
每日操纵任务的特征是与动作和对象形状相关的几何基原始人。这样的几何描述符仅通过使用笛卡尔坐标系统而差异很差。在本文中,我们提出了一种学习方法,以从坐标系词典中提取最佳表示,以编码观察到的运动/行为。这是通过在Riemannian歧管上使用高斯分布的扩展来实现的,该分布用于通过将多个几何形状作为任务的候选表示来分析一组用户演示。我们根据迭代线性二次调节器(ILQR)提出了复制问题作为一般最佳控制问题,其中使用提取的坐标系中的高斯分布来定义成本函数。我们将方法应用于模拟和7轴Franka Emika机器人中的对象抓握和箱式打开任务。结果表明,机器人可以利用几个几何形状来执行操纵任务并将其推广到新情况下,通过维护感兴趣的坐标系中任务的不变特征。
translated by 谷歌翻译
贝叶斯优化是一种数据高效技术,可用于机器人中的控制参数调整,参数策略适应和结构设计。这些问题中的许多问题需要优化在非欧几里德域上定义的函数,如球体,旋转组或正向矩阵的空间。为此,必须在感兴趣的空间内之前或等效地定义内核的高斯进程。有效内核通常反映它们定义的空间的几何形状,但设计它们通常是非微不足道的。基于随机部分微分方程和Laplace-Beltrami运营商的频谱理论,最近在Riemannian Mat'En内核的工作,提供了朝向构建此类几何感知内核的承诺途径。在本文中,我们研究了在机器人中的兴趣流动上实施这些内核的技术,展示了它们在一组人工基准函数上的性能,并说明了各种机器人应用的几何感知贝叶斯优化,覆盖方向控制,可操纵性优化,和运动规划,同时显示其提高性能。
translated by 谷歌翻译
操纵性椭圆形有效地捕获人姿势并揭示有关手头任务的信息。他们在任务依赖的机器人教学中的使用,尤其是他们从老师到学习者的转移 - 可以推动模仿人类运动。尽管在最近的文献中,重点转向了两个机器人之间的可操作性转移,但迄今为止,对另一个运动系统的能力的适应尚未解决,并且从人类到机器人的转移研究仍处于起步阶段。这项工作提出了一种新型的可操作性域适应方法,用于将可操作性信息传输到另一个运动系统的域。由于可操作性矩阵/椭圆形是对称的阳性定义(SPD),因此可以将它们视为SPD矩阵的Riemannian歧管上的点。我们是第一个从点云注册的角度解决可操作性转移问题的问题。我们提出了一种具有平行运输初始化的歧管感知的迭代次数最接近的算法(ICP)。此外,我们基于固有的几何特征,引入了与可操作性椭圆形相匹配的对应关系。我们确认了使用二-DOF操纵器以及代表人类臂运动学的7-DOF模型的模拟实验方法。
translated by 谷歌翻译
Many problems in robotics are fundamentally problems of geometry, which lead to an increased research effort in geometric methods for robotics in recent years. The results were algorithms using the various frameworks of screw theory, Lie algebra and dual quaternions. A unification and generalization of these popular formalisms can be found in geometric algebra. The aim of this paper is to showcase the capabilities of geometric algebra when applied to robot manipulation tasks. In particular the modelling of cost functions for optimal control can be done uniformly across different geometric primitives leading to a low symbolic complexity of the resulting expressions and a geometric intuitiveness. We demonstrate the usefulness, simplicity and computational efficiency of geometric algebra in several experiments using a Franka Emika robot. The presented algorithms were implemented in c++20 and resulted in the publicly available library \textit{gafro}. The benchmark shows faster computation of the kinematics than state-of-the-art robotics libraries.
translated by 谷歌翻译
在本次调查中,我们介绍了执行需要不同于环境的操作任务的机器人的当前状态,使得机器人必须隐含地或明确地控制与环境的接触力来完成任务。机器人可以执行越来越多的人体操作任务,并且在1)主题上具有越来越多的出版物,其执行始终需要联系的任务,并且通过利用完美的任务来减轻环境来缓解不确定性信息,可以在没有联系的情况下进行。最近的趋势已经看到机器人在留下的人类留给人类,例如按摩,以及诸如PEG孔的经典任务中,对其他类似任务的概率更有效,更好的误差容忍以及更快的规划或学习任务。因此,在本调查中,我们涵盖了执行此类任务的机器人的当前阶段,从调查开始所有不同的联系方式机器人可以执行,观察这些任务是如何控制和表示的,并且最终呈现所需技能的学习和规划完成这些任务。
translated by 谷歌翻译
通过学习可变阻抗控制策略,机器人助手可以智能地调整其操纵合规性,以确保在人机交互环境中操作时安全交互和适当的任务完成。在本文中,我们提出了一种基于DMP的框架,其学习和概括人类示范的可变阻抗操纵技能。该框架改善了对环境变化的机器人$'$适应性(即抓地机器人末端效应器上的抓握对象的重量和形状变化)并继承了基于演示 - 方差的刚度估计方法的效率。此外,利用我们的刚度估计方法,我们不仅产生翻译刚度型材,而且产生旋转刚度轮廓,这些轮廓在大多数学习可变阻抗控制论文中被忽略或不完整。已经进行了7 DOF冗余机器人操纵器的现实世界实验,以验证我们框架的有效性。
translated by 谷歌翻译
Imitation learning approaches achieve good generalization within the range of the training data, but tend to generate unpredictable motions when querying outside this range. We present a novel approach to imitation learning with enhanced extrapolation capabilities that exploits the so-called Equation Learner Network (EQLN). Unlike conventional approaches, EQLNs use supervised learning to fit a set of analytical expressions that allows them to extrapolate beyond the range of the training data. We augment the task demonstrations with a set of task-dependent parameters representing spatial properties of each motion and use them to train the EQLN. At run time, the features are used to query the Task-Parameterized Equation Learner Network (TP-EQLN) and generate the corresponding robot trajectory. The set of features encodes kinematic constraints of the task such as desired height or a final point to reach. We validate the results of our approach on manipulation tasks where it is important to preserve the shape of the motion in the extrapolation domain. Our approach is also compared with existing state-of-the-art approaches, in simulation and in real setups. The experimental results show that TP-EQLN can respect the constraints of the trajectory encoded in the feature parameters, even in the extrapolation domain, while preserving the overall shape of the trajectory provided in the demonstrations.
translated by 谷歌翻译
诸如操纵器之类的铰接机器人必须在不确定和动态的环境中运行,例如,相互作用(例如与人类同事)是必要的。在这种情况下,必须快速适应操作空间限制的意外变化的能力至关重要。在操纵器的配置空间中的某些点(称为奇异点),机器人失去了一个或多个自由度(DOF),并且无法在特定的操作空间方向上移动。无法在操作空间中朝任意方向移动会损害适应性和安全性。我们引入了一个几何感知奇异性索引,该索引在对称正定定义矩阵上使用Riemannian度量定义,以提供与奇异构型的接近度的度量。我们证明我们的索引避免了其他共同指数固有的某些故障模式和困难。此外,我们表明该索引可以轻松区分,使其与用于操作空间控制的局部优化方法兼容。我们的实验结果表明,对于遵循任务的到达和路径,基于我们的索引优化优于一种常见的可操作性最大化技术,并确保奇异性运动动作。
translated by 谷歌翻译
将机器人放置在受控条件外,需要多功能的运动表示,使机器人能够学习新任务并使其适应环境变化。在工作区中引入障碍或额外机器人的位置,由于故障或运动范围限制导致的关节范围的修改是典型的案例,适应能力在安全地执行机器人任务的关键作用。已经提出了代表适应性运动技能的概率动态(PROMP),其被建模为轨迹的高斯分布。这些都是在分析讲道的,可以从少数演示中学习。然而,原始PROMP制定和随后的方法都仅为特定运动适应问题提供解决方案,例如障碍避免,以及普遍的,统一的适应概率方法缺失。在本文中,我们开发了一种用于调整PROMP的通用概率框架。我们统一以前的适应技术,例如,各种类型的避避,通过一个框架,互相避免,在一个框架中,并将它们结合起来解决复杂的机器人问题。另外,我们推导了新颖的适应技术,例如时间上未结合的通量和互相避免。我们制定适应作为约束优化问题,在那里我们最小化适应的分布与原始原始的分布之间的kullback-leibler发散,而我们限制了与不希望的轨迹相关的概率质量为低电平。我们展示了我们在双机器人手臂设置中的模拟平面机器人武器和7-DOF法兰卡 - Emika机器人的若干适应问题的方法。
translated by 谷歌翻译
人类和机器人的动态运动是由姿势依赖性的非线性相互作用在自由程度之间广泛驱动的。但是,在研究人类运动产生的机制时,这些动力学效应仍被忽略。受最近作品的启发,我们假设人类运动计划为地球协同序列,因此对应于用分段最小能量实现的协调关节运动。基础计算模型建立在Riemannian几何形状上,以说明身体的惯性特征。通过对各种人类手臂运动的分析,我们发现我们的模型片段运动转化为测量协同作用,并成功预测了观察到的手臂姿势,手动轨迹及其各自的速度曲线。此外,我们表明我们的分析可以进一步利用,以通过将单个人类协同作用作为机器人配置空间中的地球途径转移到机器人中。
translated by 谷歌翻译
动态运动原语(DMP)为编码,生成和调整复杂的最终效应轨迹提供了极大的多功能性。 DMP也非常适合从人类演示中学习操纵技巧。但是,DMP的反应性质限制了其用于工具使用和对象操纵任务的适用性,这些任务涉及非全面约束,例如切割手术刀切割或导管转向。在这项工作中,我们通过添加一个耦合项来扩展笛卡尔空间DMP公式,该耦合术语强制执行一组预定义的非独立约束。我们使用udwadia-kalaba方法获得约束强迫项的闭合形式表达式。这种方法提供了一种干净,实用的解决方案,以确保运行时的限制满意度。此外,约束强迫项的提议的分析形式可实现有效的轨迹优化,但受约束。我们通过展示如何从人类示范中学习机器人切割技能来证明这种方法的有用性。
translated by 谷歌翻译
如果机器人曾经实现与动物所展示的机器人相当的自动运动,则它们必须获得在损害,故障或环境条件下快速恢复运动行为的能力,从而损害了其有效移动的能力。我们提出了一种方法,该方法使我们的机器人和模拟机器人能够在几十次尝试中恢复自由运动行为的高度。我们的方法采用行为规范,以等级的差异约束来表达所需的行为。我们展示了如何通过编码模板来考虑这些约束,从而产生了将先前优化的行为推广到新情况下以快速学习的形式概括的秘诀。我们进一步说明,在数据驱动的上下文中,足够的限制通常很容易确定。作为例证,我们证明了我们在物理7 DOF六型六杆元机器人上的恢复方法,以及对6 DOF 2D运动机制的模拟。在这两种情况下,我们恢复了与先前优化的运动在功能上无法区分的行为。
translated by 谷歌翻译
在人类机器人的相互作用中,眼球运动在非语言交流中起着重要作用。但是,控制机器人眼的动作表现出与人眼动物系统相似的性能仍然是一个重大挑战。在本文中,我们研究了如何使用电缆驱动的驱动系统来控制人眼的现实模型,该系统模仿了六个眼外肌肉的自由度。仿生设计引入了解决新的挑战,最值得注意的是,需要控制每种肌肉的支撑,以防止运动过程中的紧张感损失,这将导致电缆松弛和缺乏控制。我们构建了一个机器人原型,并开发了一个非线性模拟器和两个控制器。在第一种方法中,我们使用局部衍生技术线性化了非线性模型,并设计了线性 - 季度最佳控制器,以优化计算准确性,能量消耗和运动持续时间的成本函数。第二种方法使用复发性神经网络,该神经网络从系统的样本轨迹中学习非线性系统动力学,以及一个非线性轨迹优化求解器,可最大程度地减少相似的成本函数。我们专注于具有完全不受限制的运动学的快速saccadic眼球运动,以及六根电缆的控制信号的生成,这些电缆同时满足了几个动态优化标准。该模型忠实地模仿了人类扫视观察到的三维旋转运动学和动力学。我们的实验结果表明,尽管两种方法都产生了相似的结果,但非线性方法对于未来改进该模型的方法更加灵活,该模型的计算是线性化模型的位置依赖性偏向和局部衍生物的计算变得特别乏味。
translated by 谷歌翻译
本文提出了一种新的方法,以学习由动态系统驱动的稳定机器人控制法。该方法需要单个演示,并可以在任意高维度中推断出稳定的动力学。该方法依赖于存在一个潜在空间的想法,非线性动力学出现准线性。原始的非线性动力学通过利用图形嵌入的属性来映射到稳定的线性DS中。我们表明,图laplacian的特征分类导致在二维中的线性嵌入,并在较高维度中进行准线性。非线性术语消失,随着数据点数的增加而呈指数呈指数化,并且对于较大的点密度,嵌入似乎是线性的。我们表明,这种新的嵌入能够在高维度上建模高度非线性动力学,并以重建精度和嵌入所需的参数数量克服替代技术。我们证明了它的适用性,以控制负责在空间中执行复杂自由运动的实际机器人。
translated by 谷歌翻译
量子哈密顿学习和量子吉布斯采样的双重任务与物理和化学中的许多重要问题有关。在低温方案中,这些任务的算法通常会遭受施状能力,例如因样本或时间复杂性差而遭受。为了解决此类韧性,我们将量子自然梯度下降的概括引入了参数化的混合状态,并提供了稳健的一阶近似算法,即量子 - 固定镜下降。我们使用信息几何学和量子计量学的工具证明了双重任务的数据样本效率,因此首次将经典Fisher效率的开创性结果推广到变异量子算法。我们的方法扩展了以前样品有效的技术,以允许模型选择的灵活性,包括基于量子汉密尔顿的量子模型,包括基于量子的模型,这些模型可能会规避棘手的时间复杂性。我们的一阶算法是使用经典镜下降二元性的新型量子概括得出的。两种结果都需要特殊的度量选择,即Bogoliubov-Kubo-Mori度量。为了从数值上测试我们提出的算法,我们将它们的性能与现有基准进行了关于横向场ISING模型的量子Gibbs采样任务的现有基准。最后,我们提出了一种初始化策略,利用几何局部性来建模状态的序列(例如量子 - 故事过程)的序列。我们从经验上证明了它在实际和想象的时间演化的经验上,同时定义了更广泛的潜在应用。
translated by 谷歌翻译
机器人社区在为软机器人设备建模提供的理论工具的复杂程度中看到了指数增长。已经提出了不同的解决方案以克服与软机器人建模相关的困难,通常利用其他科学学科,例如连续式机械和计算机图形。这些理论基础通常被认为是理所当然的,这导致复杂的文献,因此,从未得到完整审查的主题。Withing这种情况下,提交的文件的目标是双重的。突出显示涉及建模技术的不同系列的常见理论根源,采用统一语言,以简化其主要连接和差异的分析。因此,对上市接近自然如下,并最终提供在该领域的主要作品的完整,解开,审查。
translated by 谷歌翻译
从演示(LFD)方法中学习显示了解决多步任务的希望;但是,这些方法不能保证在给定干扰的情况下成功复制任务。在这项工作中,我们确定了这一挑战的根源,例如学习的连续政策失败无法满足演示中隐含的离散计划。通过利用模式(而不是子观念)作为具有模式不变性和目标达到性能属性的离散抽象和运动策略,我们证明我们所学的连续策略可以模拟由线性时间逻辑(LTL)公式指定的任何离散计划。因此,模仿者对任务和运动级别的干扰都具有鲁棒性,并保证取得任务成功。项目页面:https://sites.google.com/view/ltl-ds
translated by 谷歌翻译
非线性自适应控制理论中的一个关键假设是系统的不确定性可以在一组已知基本函数的线性跨度中表示。虽然该假设导致有效的算法,但它将应用限制为非常特定的系统类别。我们介绍一种新的非参数自适应算法,其在参数上学习无限尺寸密度,以取消再现内核希尔伯特空间中的未知干扰。令人惊讶的是,所产生的控制输入承认,尽管其底层无限尺寸结构,但是尽管它的潜在无限尺寸结构实现了其实施的分析表达。虽然这种自适应输入具有丰富和富有敏感性的 - 例如,传统的线性参数化 - 其计算复杂性随时间线性增长,使其比其参数对应力相对较高。利用随机傅里叶特征的理论,我们提供了一种有效的随机实现,该实现恢复了经典参数方法的复杂性,同时可透明地保留非参数输入的表征性。特别地,我们的显式范围仅取决于系统的基础参数,允许我们所提出的算法有效地缩放到高维系统。作为该方法的说明,我们展示了随机近似算法学习由牛顿重力交互的十点批量组成的60维系统的预测模型的能力。
translated by 谷歌翻译