在多传感器数据融合的背景下,我们检查时间延迟估计或时间校准的问题。处理间隔和其他因素的差异通常导致不同传感器的测量更新之间的相对延迟。正确(最佳)数据融合要求需要预先知道或在线识别相对延迟。在文献中有几个最近的建议,可以使用递归,因果滤波器等延迟确定延长的卡尔曼滤波器(EKF)。我们仔细审查了该制定,并表明当延迟在滤波器状态向量中作为要估计的参数时,eKF(和相关算法)的结构存在基本问题。反过来,这些结构问题既容易发生递归过滤器偏置和不一致。我们的理论分析得到了仿真研究支持,这些研究表明了过滤性能方面的影响;虽然过滤噪声差异的调整可以减少不一致或发散的可能性,但仍然存在潜在的结构问题。我们提供简要建议,以便在避免标准滤波算法的缺点时维持递归过滤的计算效率。
translated by 谷歌翻译
理想情况下,机器人应该以最大化关于其内部系统和外部操作环境的状态所获得的知识的方式移动。轨迹设计是一个具有挑战性的问题,从各种角度来看,从信息理论分析到基于倾斜的方法。最近,已经提出了基于可观察性的指标来找到能够快速准确的状态和参数估计的轨迹。这些方法的活力和功效尚未在文献中众所周知。在本文中,我们比较了两个最先进的方法,以便可观察性感知轨迹优化,并寻求增加重要的理论澄清和对其整体效力的宝贵讨论。为了评估,我们使用逼真的物理模拟器检查传感器到传感器外部自校准的代表性任务。我们还研究了这些算法的灵敏度,以改变易欣欣传感器测量的信息内容。
translated by 谷歌翻译
在本文中,提出了一个基于Chebyshev多项式优化(CHEVOPT)的后时间最大估计的新框架,它提出了将非线性连续时状态估计转换为恒定参数优化的问题。具体而言,随时间变化的系统状态由Chebyshev多项式表示,未知的Chebyshev系数通过最大程度地减少先验,动力学和测量的加权总和来优化。在最小二乘意义上,提出的CHEVOPT是最佳的连续时间估计,需要进行批处理处理。还提出了递归滑动窗口版本,以满足实时应用程序的要求。与众所周知的高斯过滤器相比,Chevopt可以更好地解决动力学和测量中的非线性。指示性示例的数值结果表明,所提出的Chevopt在扩展/无情的卡尔曼过滤器和扩展的批次/固定lag更平滑的情况下,取得了明显提高的精度,闭上了cramer-rao的下限。
translated by 谷歌翻译
本文介绍了一种新型跟踪滤波器,主要用于在自动表面车辆(ASV)上的碰撞避免系统中使用。所提出的方法利用自动信息系统(AIS)消息传递协议来利用实时运动信息,以估计附近协同目标的位置,速度和标题。使用与源自余弦的球面规律的运动方程,在大地测量坐标中递归地估计每个目标的状态。这改善了先前的方法,其中许多方法采用扩展的卡尔曼滤波器(EKF),因此需要局部平面坐标帧的规范,以便以易于微差形式描述状态运动学。建议的大地电线UKF避免了对该本地飞机的需求。该特征对于远程ASV来说是特别有利的,其必须否则必须定期重新定义新的局部平面来缩短线性化误差。在真实世界的运营中,这种重复的重新定义可以引入错误并使任务规划复杂化。通过模拟和现场测试显示所提出的大地电线UKF以及传统的飞机 - 笛卡尔ekf,无论是在估计误差和稳定性方面的表现还是更好。
translated by 谷歌翻译
姿势估计对于机器人感知,路径计划等很重要。机器人姿势可以在基质谎言组上建模,并且通常通过基于滤波器的方法进行估算。在本文中,我们在存在随机噪声的情况下建立了不变扩展Kalman滤波器(IEKF)的误差公式,并将其应用于视觉辅助惯性导航。我们通过OpenVINS平台上的数值模拟和实验评估我们的算法。在Euroc公共MAV数据集上执行的仿真和实验都表明,我们的算法优于某些基于最先进的滤波器方法,例如基于Quaternion的EKF,首先估计Jacobian EKF等。
translated by 谷歌翻译
本文在连续时间内源于序列超出(OOS)一组测量的最佳贝叶斯处理,以进行多个目标跟踪。我们考虑一种在连续时间内建模的多目标系统,当我们接收到根据标准点目标模型分发的测量时,在时间步骤在时间步骤中离散。在采样时间步骤中的所有关于该系统的信息都是由所有轨迹集的后密度提供的。可以通过连续离散的轨迹泊松多Bernoulli混合物(TPMBM)滤波器来计算这种密度。当我们收到OOS测量时,最佳贝叶斯处理执行改造步骤,该转换步骤在OOS测量时间戳下方添加轨迹信息,然后是更新步骤。在OOS测量更新之后,后部保留在TPMBM形式中。我们还提供基于轨迹泊松多Bernoulli滤波器的计算方式替代品。通过模拟评估两种处理OOS测量方法的方法的有效性。
translated by 谷歌翻译
Visual Inertial Odometry (VIO) is the problem of estimating a robot's trajectory by combining information from an inertial measurement unit (IMU) and a camera, and is of great interest to the robotics community. This paper develops a novel Lie group symmetry for the VIO problem and applies the recently proposed equivariant filter. The symmetry is shown to be compatible with the invariance of the VIO reference frame, lead to exact linearisation of bias-free IMU dynamics, and provide equivariance of the visual measurement function. As a result, the equivariant filter (EqF) based on this Lie group is a consistent estimator for VIO with lower linearisation error in the propagation of state dynamics and a higher order equivariant output approximation than standard formulations. Experimental results on the popular EuRoC and UZH FPV datasets demonstrate that the proposed system outperforms other state-of-the-art VIO algorithms in terms of both speed and accuracy.
translated by 谷歌翻译
反对派系统中最近的进展在贝叶斯视角下,逆滤成了显着的研究兴趣。例如,估计逆基金的卡尔曼滤波器跟踪估计的兴趣与预测对手的未来步骤的目的已经导致最近反向卡尔曼滤波器(I-KF)的配方。在逆滤波的这种情况下,我们通过提出反向扩展卡尔曼滤波器(I-EKF)来解决向前滤波器的非线性过程动态和未知输入的关键挑战。通过考虑前向和逆状态空间模型中的非线性,我们通过派生I-EKF而没有未知的输入。在此过程中,还获得了I-KF的输入。然后,我们使用界限非线性和未知的矩阵方法提供理论稳定性保证。我们进一步概括了这些制剂,并对高出高斯和抖动的I-EKF的案例概括。数值实验使用递归Cram \'ER-RAO作为基准验证各种提出的逆滤波器的方法。
translated by 谷歌翻译
当信号通过物理传感器测量,它们被噪声干扰。为了减少噪音,低通滤波器,以便衰减高频分量的输入信号,如果无论它们来自噪声或实际信号被通常使用的。因此,低通滤波器必须仔细调整以避免信号的显著恶化。这种调整需要有关的信号,这往往不是在应用,如强化学习或基于学习控制提供先验知识。为了克服这种限制,我们提出了一种基于高斯过程回归自适应低通滤波器。通过考虑以前的意见,更新和预测足够快的现实世界的滤波应用的恒定窗口即可实现。此外,超参数导致的低通行为适配的在线优化,使得没有事先调整是必要的。我们表明,该方法的估计误差一致有界,并证明了该方法的灵活性和效率的几个模拟。
translated by 谷歌翻译
非线性动态系统的识别仍然是整个工程的重大挑战。这项工作提出了一种基于贝叶斯过滤的方法,以提取和确定系统中未知的非线性项的贡献,可以将其视为恢复力表面类型方法的替代观点。为了实现这种识别,最初将非线性恢复力的贡献作为高斯过程建模。该高斯过程将转换为状态空间模型,并与系统的线性动态组件结合使用。然后,通过推断过滤和平滑分布,可以提取系统的内部状态和非线性恢复力。在这些状态下,可以构建非线性模型。在模拟案例研究和实验基准数据集中,该方法被证明是有效的。
translated by 谷歌翻译
用于在线状态估计的随机过滤器是自治系统的核心技术。此类过滤器的性能是系统能力的关键限制因素之一。此类过滤器的渐近行为(例如,用于常规操作)和瞬态响应(例如,对于快速初始化和重置)对于保证自主系统的稳健操作至关重要。本文使用n个方向测量值(包括车身框架和参考框架方向类型测量值)引入了陀螺仪辅助姿态估计器的新通用公式。该方法基于一种集成状态公式,该公式结合了导航,所有方向传感器的外部校准以及在单个模棱两可的几何结构中的陀螺式偏置状态。这种新提出的对称性允许模块化的不同方向测量及其外部校准,同时保持在同一对称性中包括偏置态的能力。随后使用此对称性的基于滤波器的估计量明显改善了瞬态响应,与最新方法相比,渐近偏置和外部校准估计。估计器在统计代表性的模拟中得到了验证,并在现实世界实验中进行了测试。
translated by 谷歌翻译
本论文主要涉及解决深层(时间)高斯过程(DGP)回归问题的状态空间方法。更具体地,我们代表DGP作为分层组合的随机微分方程(SDES),并且我们通过使用状态空间过滤和平滑方法来解决DGP回归问题。由此产生的状态空间DGP(SS-DGP)模型生成丰富的电视等级,与建模许多不规则信号/功能兼容。此外,由于他们的马尔可道结构,通过使用贝叶斯滤波和平滑方法可以有效地解决SS-DGPS回归问题。本论文的第二次贡献是我们通过使用泰勒力矩膨胀(TME)方法来解决连续离散高斯滤波和平滑问题。这诱导了一类滤波器和SmooThers,其可以渐近地精确地预测随机微分方程(SDES)解决方案的平均值和协方差。此外,TME方法和TME过滤器和SmoOthers兼容模拟SS-DGP并解决其回归问题。最后,本文具有多种状态 - 空间(深)GPS的应用。这些应用主要包括(i)来自部分观察到的轨迹的SDES的未知漂移功能和信号的光谱 - 时间特征估计。
translated by 谷歌翻译
在许多学科中,动态系统的数据信息预测模型的开发引起了广泛的兴趣。我们提出了一个统一的框架,用于混合机械和机器学习方法,以从嘈杂和部分观察到的数据中识别动态系统。我们将纯数据驱动的学习与混合模型进行比较,这些学习结合了不完善的域知识。我们的公式与所选的机器学习模型不可知,在连续和离散的时间设置中都呈现,并且与表现出很大的内存和错误的模型误差兼容。首先,我们从学习理论的角度研究无内存线性(W.R.T.参数依赖性)模型误差,从而定义了过多的风险和概括误差。对于沿阵行的连续时间系统,我们证明,多余的风险和泛化误差都通过与T的正方形介于T的术语(指定训练数据的时间间隔)的术语界定。其次,我们研究了通过记忆建模而受益的方案,证明了两类连续时间复发性神经网络(RNN)的通用近似定理:两者都可以学习与内存有关的模型误差。此外,我们将一类RNN连接到储层计算,从而将学习依赖性错误的学习与使用随机特征在Banach空间之间进行监督学习的最新工作联系起来。给出了数值结果(Lorenz '63,Lorenz '96多尺度系统),以比较纯粹的数据驱动和混合方法,发现混合方法较少,渴望数据较少,并且更有效。最后,我们从数值上证明了如何利用数据同化来从嘈杂,部分观察到的数据中学习隐藏的动态,并说明了通过这种方法和培训此类模型来表示记忆的挑战。
translated by 谷歌翻译
在本文中,我们提出了一种基于模型的增强学习(MBRL)算法,称为\ emph {Monte Carlo概率的学习控制}(MC-PILCO)。该算法依赖于高斯流程(GPS)来对系统动力学进行建模以及蒙特卡洛方法以估计策略梯度。这定义了一个框架,在该框架中,我们可以在其中选择以下组件的选择:(i)成本函数的选择,(ii)使用辍学的策略优化,(iii)通过在使用中的结构内核来提高数据效率GP型号。上述方面的组合会极大地影响MC-PILCO的性能。在模拟卡车杆环境中的数值比较表明,MC-PILCO具有更好的数据效率和控制性能W.R.T.最先进的基于GP的MBRL算法。最后,我们将MC-PILCO应用于实际系统,考虑到具有部分可测量状态的特定系统。我们讨论了在策略优化过程中同时建模测量系统和国家估计器的重要性。已在模拟和两个真实系统(Furuta pendulum和一个球形式钻机)中测试了所提出的溶液的有效性。
translated by 谷歌翻译
我们研究了由测量和过程噪声引起的不确定性的动态系统的规划问题。测量噪声导致系统状态可观察性有限,并且过程噪声在给定控制的结果中导致不确定性。问题是找到一个控制器,保证系统在有限时间内达到所需的目标状态,同时避免障碍物,至少需要一些所需的概率。由于噪音,此问题不承认一般的精确算法或闭合性解决方案。我们的主要贡献是一种新颖的规划方案,采用卡尔曼滤波作为状态估计器,以获得动态系统的有限状态抽象,我们将作为马尔可夫决策过程(MDP)正式化。通过延长概率间隔的MDP,我们可以增强模型对近似过渡概率的数值不精确的鲁棒性。对于这种所谓的间隔MDP(IMDP),我们采用最先进的验证技术来有效地计算最大化目标状态概率的计划。我们展示了抽象的正确性,并提供了几种优化,旨在平衡计划的质量和方法的可扩展性。我们展示我们的方法能够处理具有6维状态的系统,该系统导致具有数万个状态和数百万个过渡的IMDP。
translated by 谷歌翻译
数学模型是动态控制系统设计中的基本构件。随着控制系统变得越来越复杂和网络,基于第一原理的方法达到了限制。数据驱动的方法提供了替代方案。但是,在没有结构知识的情况下,这些方法很容易在训练数据中找到虚假的相关性,这可能会妨碍所获得的模型的概括能力。当系统暴露于未知情况时,这可以显着降低控制和预测性能。先前的因果鉴定可以防止这种陷阱。在本文中,我们提出了一种识别控制系统因果结构的方法。我们根据可控性概念设计实验,该概念提供了一种系统的方法来计算输入轨迹,该输入轨迹将系统引导到其状态空间中的特定区域。然后,我们分析从因果推理中利用强大技术的结果数据,并将其扩展到控制系统。此外,我们得出了保证发现系统真正因果结构的条件。在机器人臂上的实验表明,来自现实世界数据和增强的概括能力的可靠因果鉴定。
translated by 谷歌翻译
We propose a learning-based robust predictive control algorithm that compensates for significant uncertainty in the dynamics for a class of discrete-time systems that are nominally linear with an additive nonlinear component. Such systems commonly model the nonlinear effects of an unknown environment on a nominal system. We optimize over a class of nonlinear feedback policies inspired by certainty equivalent "estimate-and-cancel" control laws pioneered in classical adaptive control to achieve significant performance improvements in the presence of uncertainties of large magnitude, a setting in which existing learning-based predictive control algorithms often struggle to guarantee safety. In contrast to previous work in robust adaptive MPC, our approach allows us to take advantage of structure (i.e., the numerical predictions) in the a priori unknown dynamics learned online through function approximation. Our approach also extends typical nonlinear adaptive control methods to systems with state and input constraints even when we cannot directly cancel the additive uncertain function from the dynamics. We apply contemporary statistical estimation techniques to certify the system's safety through persistent constraint satisfaction with high probability. Moreover, we propose using Bayesian meta-learning algorithms that learn calibrated model priors to help satisfy the assumptions of the control design in challenging settings. Finally, we show in simulation that our method can accommodate more significant unknown dynamics terms than existing methods and that the use of Bayesian meta-learning allows us to adapt to the test environments more rapidly.
translated by 谷歌翻译
近几十年来,Camera-IMU(惯性测量单元)传感器融合已经过度研究。已经提出了具有自校准的运动估计的许多可观察性分析和融合方案。然而,它一直不确定是否在一般运动下观察到相机和IMU内在参数。为了回答这个问题,我们首先证明,对于全球快门Camera-IMU系统,所有内在和外在参数都可以观察到未知的地标。鉴于此,滚动快门(RS)相机的时间偏移和读出时间也证明是可观察到的。接下来,为了验证该分析并解决静止期间结构无轨滤波器的漂移问题,我们开发了一种基于关键帧的滑动窗滤波器(KSWF),用于测量和自校准,它适用于单眼RS摄像机或立体声RS摄像机。虽然关键帧概念广泛用于基于视觉的传感器融合,但对于我们的知识,KSWF是支持自我校准的首先。我们的模拟和实际数据测试验证了,可以使用不同运动的机会主义地标的观察来完全校准相机-IMU系统。实际数据测试确认了先前的典故,即保持状态矢量的地标可以弥补静止漂移,并显示基于关键帧的方案是替代治疗方法。
translated by 谷歌翻译
惯性辅助系统需要连续的运动激发,以表征测量偏差,这些偏差将使本地化框架需要准确的集成。本文建议使用信息性的路径计划来找到最佳的轨迹,以最大程度地减少IMU偏见的不确定性和一种自适应痕迹方法,以指导规划师朝着有助于收敛的轨迹迈进。关键贡献是一种基于高斯工艺(GP)的新型回归方法,以从RRT*计划算法的变体之间实现连续性和可区分性。我们采用应用于GP内核函数的线性操作员不仅推断连续位置轨迹,还推断速度和加速度。线性函数的使用实现了IMU测量给出的速度和加速度约束,以施加在位置GP模型上。模拟和现实世界实验的结果表明,IMU偏差收敛的计划有助于最大程度地减少状态估计框架中的本地化错误。
translated by 谷歌翻译