数学模型是动态控制系统设计中的基本构件。随着控制系统变得越来越复杂和网络,基于第一原理的方法达到了限制。数据驱动的方法提供了替代方案。但是,在没有结构知识的情况下,这些方法很容易在训练数据中找到虚假的相关性,这可能会妨碍所获得的模型的概括能力。当系统暴露于未知情况时,这可以显着降低控制和预测性能。先前的因果鉴定可以防止这种陷阱。在本文中,我们提出了一种识别控制系统因果结构的方法。我们根据可控性概念设计实验,该概念提供了一种系统的方法来计算输入轨迹,该输入轨迹将系统引导到其状态空间中的特定区域。然后,我们分析从因果推理中利用强大技术的结果数据,并将其扩展到控制系统。此外,我们得出了保证发现系统真正因果结构的条件。在机器人臂上的实验表明,来自现实世界数据和增强的概括能力的可靠因果鉴定。
translated by 谷歌翻译
评估数据流是否是从相同分布中绘制的是各种机器学习问题的核心。这与动态系统生成的数据尤其重要,因为这种系统对于生物医学,经济或工程系统的许多实际过程至关重要。虽然内核两样本测试对于比较独立和相同分布的随机变量具有强大的功能,但没有建立的方法来比较动态系统。主要问题是固有的违反独立假设。我们通过解决三个核心挑战提出了针对动态系统的两样本测试:我们(i)引入了一种新颖的混合概念,该概念在相关度量标准中捕获自相关,(ii)提出了一种有效的方法来估计混合速度纯粹依赖于纯粹依赖混合的速度。数据,(iii)将它们集成到已建立的核两样本测试中。结果是一种数据驱动的方法,可直接在实践中使用,并具有合理的理论保证。在从人类步行数据中进行异常检测的示例应用程序中,我们表明该测试很容易适用,没有任何人类的专家知识和功能工程。
translated by 谷歌翻译
We propose a framework for analyzing and comparing distributions, which we use to construct statistical tests to determine if two samples are drawn from different distributions. Our test statistic is the largest difference in expectations over functions in the unit ball of a reproducing kernel Hilbert space (RKHS), and is called the maximum mean discrepancy (MMD). We present two distributionfree tests based on large deviation bounds for the MMD, and a third test based on the asymptotic distribution of this statistic. The MMD can be computed in quadratic time, although efficient linear time approximations are available. Our statistic is an instance of an integral probability metric, and various classical metrics on distributions are obtained when alternative function classes are used in place of an RKHS. We apply our two-sample tests to a variety of problems, including attribute matching for databases using the Hungarian marriage method, where they perform strongly. Excellent performance is also obtained when comparing distributions over graphs, for which these are the first such tests.
translated by 谷歌翻译
动态系统广泛用于科学和工程,以模拟由多个交互组件组成的系统。通常,它们可以在意义上给出因果解释,因为它们不仅模拟了系统组件状态随时间的演变,而且描述了他们的进化如何受到动态的系统的外部干预的影响。我们介绍了结构动态因果模型(SDCMS)的正式框架,其将系统组件的因果语言作为模型的一部分来阐述。 SDCMS表示动态系统作为随机过程的集合,并指定了管理每个组件的动态的基本因果机制,作为任意顺序的随机微分方程的结构化系统。 SDCMS扩展了结构因果模型(SCM)的多功能因果建模框架,也称为结构方程模型(SEM),通过显式允许时间依赖。 SDCM可以被认为是SCM的随机过程版本,其中SCM的静态随机变量由动态随机过程及其衍生物代替。我们为SDCMS理论提供基础,(i)正式定义SDCMS,其解决方案,随机干预和图形表示; (ii)对初始条件的解决方案的存在性和独特性; (iii)随着时间的推移倾向于无穷大,讨论SDCMS平衡的条件下降; (iv)将SDCM的性质与平衡SCM的性质相关联。这封对应关系使人们能够在研究大类随机动力系统的因果语义时利用SCM的大量统计工具和发现方法。该理论用来自不同科学域的几个众所周知的示例进行说明。
translated by 谷歌翻译
我们合并计算力学的因果状态(预测等同历史)的定义与再现 - 内核希尔伯特空间(RKHS)表示推断。结果是一种广泛适用的方法,可直接从系统行为的观察中迁移因果结构,无论它们是否超过离散或连续事件或时间。结构表示 - 有限或无限状态内核$ \ epsilon $ -Machine - 由减压变换提取,其提供了有效的因果状态及其拓扑。以这种方式,系统动态由用于在因果状态上的随机(普通或部分)微分方程表示。我们介绍了一种算法来估计相关的演化运营商。平行于Fokker-Plank方程,它有效地发展了因果状态分布,并通过RKHS功能映射在原始数据空间中进行预测。我们展示了这些技术,以及他们的预测能力,在离散时间的离散时间离散 - 有限的无限值Markov订单流程,其中有限状态隐藏马尔可夫模型与(i)有限或(ii)不可数 - 无限因果态和(iii)连续时间,由热驱动的混沌流产生的连续值处理。该方法在存在不同的外部和测量噪声水平和非常高的维数据存在下鲁棒地估计因果结构。
translated by 谷歌翻译
在许多学科中,动态系统的数据信息预测模型的开发引起了广泛的兴趣。我们提出了一个统一的框架,用于混合机械和机器学习方法,以从嘈杂和部分观察到的数据中识别动态系统。我们将纯数据驱动的学习与混合模型进行比较,这些学习结合了不完善的域知识。我们的公式与所选的机器学习模型不可知,在连续和离散的时间设置中都呈现,并且与表现出很大的内存和错误的模型误差兼容。首先,我们从学习理论的角度研究无内存线性(W.R.T.参数依赖性)模型误差,从而定义了过多的风险和概括误差。对于沿阵行的连续时间系统,我们证明,多余的风险和泛化误差都通过与T的正方形介于T的术语(指定训练数据的时间间隔)的术语界定。其次,我们研究了通过记忆建模而受益的方案,证明了两类连续时间复发性神经网络(RNN)的通用近似定理:两者都可以学习与内存有关的模型误差。此外,我们将一类RNN连接到储层计算,从而将学习依赖性错误的学习与使用随机特征在Banach空间之间进行监督学习的最新工作联系起来。给出了数值结果(Lorenz '63,Lorenz '96多尺度系统),以比较纯粹的数据驱动和混合方法,发现混合方法较少,渴望数据较少,并且更有效。最后,我们从数值上证明了如何利用数据同化来从嘈杂,部分观察到的数据中学习隐藏的动态,并说明了通过这种方法和培训此类模型来表示记忆的挑战。
translated by 谷歌翻译
动态系统中的完美适应性是一个或多个变量具有对外部刺激的持续变化的初始短暂响应的现象,但随着系统收敛到平衡,其原始值还原为原始值。借助因果有序算法,可以构建代表变量之间的因果关系和平衡分布中条件独立性之间的因果关系的图形表示。我们应用这些工具来制定足够的图形条件,以识别一组一阶微分方程的完美适应。此外,我们提供了足够的条件来测试实验平衡数据中完美适应的情况。我们将此方法应用于蛋白质信号通路的简单模型,并在模拟和使用现实世界中的蛋白质表达数据中测试其预测。我们证明,完美的适应会导致因果发现算法输出中边缘的误导方向。
translated by 谷歌翻译
我们提出了一种基于最大平均差异(MMD)的新型非参数两样本测试,该测试是通过具有不同核带宽的聚合测试来构建的。这种称为MMDAGG的聚合过程可确保对所使用的内核的收集最大化测试能力,而无需持有核心选择的数据(这会导致测试能力损失)或任意内核选择,例如中位数启发式。我们在非反应框架中工作,并证明我们的聚集测试对Sobolev球具有最小自适应性。我们的保证不仅限于特定的内核,而是符合绝对可集成的一维翻译不变特性内核的任何产品。此外,我们的结果适用于流行的数值程序来确定测试阈值,即排列和野生引导程序。通过对合成数据集和现实世界数据集的数值实验,我们证明了MMDAGG优于MMD内核适应的替代方法,用于两样本测试。
translated by 谷歌翻译
Classical asymptotic theory for statistical inference usually involves calibrating a statistic by fixing the dimension $d$ while letting the sample size $n$ increase to infinity. Recently, much effort has been dedicated towards understanding how these methods behave in high-dimensional settings, where $d$ and $n$ both increase to infinity together. This often leads to different inference procedures, depending on the assumptions about the dimensionality, leaving the practitioner in a bind: given a dataset with 100 samples in 20 dimensions, should they calibrate by assuming $n \gg d$, or $d/n \approx 0.2$? This paper considers the goal of dimension-agnostic inference; developing methods whose validity does not depend on any assumption on $d$ versus $n$. We introduce an approach that uses variational representations of existing test statistics along with sample splitting and self-normalization to produce a new test statistic with a Gaussian limiting distribution, regardless of how $d$ scales with $n$. The resulting statistic can be viewed as a careful modification of degenerate U-statistics, dropping diagonal blocks and retaining off-diagonal blocks. We exemplify our technique for some classical problems including one-sample mean and covariance testing, and show that our tests have minimax rate-optimal power against appropriate local alternatives. In most settings, our cross U-statistic matches the high-dimensional power of the corresponding (degenerate) U-statistic up to a $\sqrt{2}$ factor.
translated by 谷歌翻译
本论文主要涉及解决深层(时间)高斯过程(DGP)回归问题的状态空间方法。更具体地,我们代表DGP作为分层组合的随机微分方程(SDES),并且我们通过使用状态空间过滤和平滑方法来解决DGP回归问题。由此产生的状态空间DGP(SS-DGP)模型生成丰富的电视等级,与建模许多不规则信号/功能兼容。此外,由于他们的马尔可道结构,通过使用贝叶斯滤波和平滑方法可以有效地解决SS-DGPS回归问题。本论文的第二次贡献是我们通过使用泰勒力矩膨胀(TME)方法来解决连续离散高斯滤波和平滑问题。这诱导了一类滤波器和SmooThers,其可以渐近地精确地预测随机微分方程(SDES)解决方案的平均值和协方差。此外,TME方法和TME过滤器和SmoOthers兼容模拟SS-DGP并解决其回归问题。最后,本文具有多种状态 - 空间(深)GPS的应用。这些应用主要包括(i)来自部分观察到的轨迹的SDES的未知漂移功能和信号的光谱 - 时间特征估计。
translated by 谷歌翻译
这项教程调查概述了统计学习理论中最新的非征血性进步与控制和系统识别相关。尽管在所有控制领域都取得了重大进展,但在线性系统的识别和学习线性二次调节器时,该理论是最发达的,这是本手稿的重点。从理论的角度来看,这些进步的大部分劳动都在适应现代高维统计和学习理论的工具。虽然与控制对机器学习的工具感兴趣的理论家高度相关,但基础材料并不总是容易访问。为了解决这个问题,我们提供了相关材料的独立介绍,概述了基于最新结果的所有关键思想和技术机械。我们还提出了许多开放问题和未来的方向。
translated by 谷歌翻译
在广泛的应用程序中,从观察到的数据中识别隐藏的动态是一项重大且具有挑战性的任务。最近,线性多步法方法(LMM)和深度学习的结合已成功地用于发现动力学,而对这种方法进行完整的收敛分析仍在开发中。在这项工作中,我们考虑了基于网络的深度LMM,以发现动态。我们使用深网的近似属性提出了这些方法的错误估计。它指出,对于某些LMMS的家庭,$ \ ell^2 $网格错误由$ O(H^p)$的总和和网络近似错误,其中$ h $是时间步长和$P $是本地截断错误顺序。提供了几个物理相关示例的数值结果,以证明我们的理论。
translated by 谷歌翻译
We develop an online kernel Cumulative Sum (CUSUM) procedure, which consists of a parallel set of kernel statistics with different window sizes to account for the unknown change-point location. Compared with many existing sliding window-based kernel change-point detection procedures, which correspond to the Shewhart chart-type procedure, the proposed procedure is more sensitive to small changes. We further present a recursive computation of detection statistics, which is crucial for online procedures to achieve a constant computational and memory complexity, such that we do not need to calculate and remember the entire Gram matrix, which can be a computational bottleneck otherwise. We obtain precise analytic approximations of the two fundamental performance metrics, the Average Run Length (ARL) and Expected Detection Delay (EDD). Furthermore, we establish the optimal window size on the order of $\log ({\rm ARL})$ such that there is nearly no power loss compared with an oracle procedure, which is analogous to the classic result for window-limited Generalized Likelihood Ratio (GLR) procedure. We present extensive numerical experiments to validate our theoretical results and the competitive performance of the proposed method.
translated by 谷歌翻译
Network-based analyses of dynamical systems have become increasingly popular in climate science. Here we address network construction from a statistical perspective and highlight the often ignored fact that the calculated correlation values are only empirical estimates. To measure spurious behaviour as deviation from a ground truth network, we simulate time-dependent isotropic random fields on the sphere and apply common network construction techniques. We find several ways in which the uncertainty stemming from the estimation procedure has major impact on network characteristics. When the data has locally coherent correlation structure, spurious link bundle teleconnections and spurious high-degree clusters have to be expected. Anisotropic estimation variance can also induce severe biases into empirical networks. We validate our findings with ERA5 reanalysis data. Moreover we explain why commonly applied resampling procedures are inappropriate for significance evaluation and propose a statistically more meaningful ensemble construction framework. By communicating which difficulties arise in estimation from scarce data and by presenting which design decisions increase robustness, we hope to contribute to more reliable climate network construction in the future.
translated by 谷歌翻译
由于其出色的经验表现,随机森林是过去十年中使用的机器学习方法之一。然而,由于其黑框的性质,在许多大数据应用中很难解释随机森林的结果。量化各个特征在随机森林中的实用性可以大大增强其解释性。现有的研究表明,一些普遍使用的特征对随机森林的重要性措施遭受了偏见问题。此外,对于大多数现有方法,缺乏全面的规模和功率分析。在本文中,我们通过假设检验解决了问题,并提出了一个自由化特征 - 弥散性相关测试(事实)的框架,以评估具有偏见性属性的随机森林模型中给定特征的重要性,我们零假设涉及该特征是否与所有其他特征有条件地独立于响应。关于高维随机森林一致性的一些最新发展,对随机森林推断的这种努力得到了赋予的能力。在存在功能依赖性的情况下,我们的事实测试的香草版可能会遇到偏见问题。我们利用偏置校正的不平衡和调节技术。我们通过增强功率的功能转换将合奏的想法进一步纳入事实统计范围。在相当普遍的具有依赖特征的高维非参数模型设置下,我们正式确定事实可以提供理论上合理的随机森林具有P值,并通过非催化分析享受吸引人的力量。新建议的方法的理论结果和有限样本优势通过几个模拟示例和与Covid-19的经济预测应用进行了说明。
translated by 谷歌翻译
随机过程是随机变量,其中一些路径中的值。然而,将随机过程降低到路径值随机变量忽略其过滤,即通过时间通过该过程携带的信息流。通过调节其过滤过程,我们介绍了一系列高阶内核eMbeddings(KMES),概括了KME的概念,并捕获了与过滤有关的附加信息。我们导出了相关的高阶最大均衡(MMD)的经验估计器,并证明了一致性。然后,我们构建一个过滤敏感的内核两种样本测试,能够拾取标准MMD测试错过的信息。此外,利用我们的更高阶MMDS,我们在随机过程中构建了一个通用内核的家庭,允许通过经典内核的回归方法解决现实世界校准和最佳停止问题(例如美国选项的定价)。最后,调整对随机过程的情况的条件独立性的现有测试,我们设计了一种因果发现算法,以恢复与其多维轨迹的观察相互作用的结构依赖性的因果关系。
translated by 谷歌翻译
矢量值随机变量的矩序列可以表征其定律。我们通过使用所谓的稳健签名矩来研究路径值随机变量(即随机过程)的类似问题。这使我们能够为随机过程定律得出最大平均差异类型的度量,并研究其在随机过程定律方面引起的拓扑。可以使用签名内核对该度量进行内核,从而有效地计算它。作为应用程序,我们为随机过程定律提供了非参数的两样本假设检验。
translated by 谷歌翻译
从数据稳定动力学系统的数据中学习控制器通常遵循首先识别模型然后基于确定模型构建控制器的两步过程。但是,学习模型意味着确定系统动力学的通用描述,这些描述可能需要大量数据并提取对稳定的特定任务不必要的信息。这项工作的贡献是表明,如果线性动力学系统具有尺寸(McMillan学位)$ n $,那么总是存在$ n $状态,可以从中构建稳定反馈控制器,而与表示的尺寸无关观察到的状态和输入的数量。通过基于先前的工作,这一发现意味着,与学习动力学模型所需的最少状态相比,观察到的状态较少的任何线性动力系统都可以稳定。通过数值实验证明了理论发现,这些实验表明了圆柱体后面的流动稳定,从学习模型的数据少于数据。
translated by 谷歌翻译
The kernel Maximum Mean Discrepancy~(MMD) is a popular multivariate distance metric between distributions that has found utility in two-sample testing. The usual kernel-MMD test statistic is a degenerate U-statistic under the null, and thus it has an intractable limiting distribution. Hence, to design a level-$\alpha$ test, one usually selects the rejection threshold as the $(1-\alpha)$-quantile of the permutation distribution. The resulting nonparametric test has finite-sample validity but suffers from large computational cost, since every permutation takes quadratic time. We propose the cross-MMD, a new quadratic-time MMD test statistic based on sample-splitting and studentization. We prove that under mild assumptions, the cross-MMD has a limiting standard Gaussian distribution under the null. Importantly, we also show that the resulting test is consistent against any fixed alternative, and when using the Gaussian kernel, it has minimax rate-optimal power against local alternatives. For large sample sizes, our new cross-MMD provides a significant speedup over the MMD, for only a slight loss in power.
translated by 谷歌翻译
动态系统的建模和仿真是许多控制方法的必要步骤。使用基于参数的基于参数的技术来建模现代系统,例如软机器人或人机交互,由于系统动态的复杂性,通常是挑战甚至不可行的。相比之下,数据驱动方法只需要最少的先验知识和规模,并以系统的复杂性规模。特别地,高斯过程动态模型(GPDMS)为复杂动态的建模提供了非常有前途的结果。然而,这些GP模型的控制特性刚刚稀疏地研究,这导致了建模和控制方案中的“黑箱”处理。此外,GPDMS对预测目的的采样,尊重其非参数性的非公平性,使得理论分析具有挑战性。在本文中,我们呈现近似的GPDM,它是马尔可夫的并分析它们的控制理论特性。其中,分析了近似的误差,提供了轨迹的界限条件。结果用数字示例说明,该数值示例显示近似模型的功率,而计算时间显着降低。
translated by 谷歌翻译