临时团队合作(AHT)是创建一个必须与以前看不见的队友合作而没有事先协调的问题。许多现有的AHT方法可以归类为基于类型的方法,这些方法需要一组预定义的队友进行培训。为训练设计队友类型是一个具有挑战性的问题,它决定了在训练期间与队友类型打交道时的代理商的概括性能。在这项工作中,我们提出了一种基于最大化最佳响应多样性指标的不同队友类型的方法。我们表明,我们提出的方法会产生队友类型,这些类型需要在协作期间从学习者那里获得更广泛的最佳反应,这可能会提高学习者在AHT中的稳健性与替代方法相比。
translated by 谷歌翻译
临时团队合作是设计可以与新队友合作而无需事先协调的研究问题的研究问题。这项调查做出了两个贡献:首先,它提供了对临时团队工作问题不同方面的结构化描述。其次,它讨论了迄今为止该领域取得的进展,并确定了临时团队工作中需要解决的直接和长期开放问题。
translated by 谷歌翻译
AI代理应该能够与人类协调以解决任务。我们考虑培训加强学习(RL)代理的问题,而不使用任何人类数据,即在零射击设置中,使其能够与人类合作。标准RL代理商通过自我播放学习。不幸的是,这些代理商只知道如何与自己合作,通常不会与人类的看不见的伙伴表现良好。如何以零射时的方式训练强大的代理的方法仍然需要研究。从最大熵RL激励,我们推出了集中的人口熵目标,以便于学习各种各样的代理商,后来用于培训坚强的代理与看不见的合作伙伴合作。所提出的方法与基线方法相比,其有效性,包括自助PPO,在流行的过度烹制的游戏环境中,包括自行式PPO,标准群体的培训(PBT)和基于轨迹分集的PBT。我们还通过真实人类进行在线实验,并进一步证明了该方法在现实世界中的功效。显示实验结果的补充视频可在https://youtu.be/xh-fkd0aake上获得。
translated by 谷歌翻译
In general-sum games, the interaction of self-interested learning agents commonly leads to collectively worst-case outcomes, such as defect-defect in the iterated prisoner's dilemma (IPD). To overcome this, some methods, such as Learning with Opponent-Learning Awareness (LOLA), shape their opponents' learning process. However, these methods are myopic since only a small number of steps can be anticipated, are asymmetric since they treat other agents as naive learners, and require the use of higher-order derivatives, which are calculated through white-box access to an opponent's differentiable learning algorithm. To address these issues, we propose Model-Free Opponent Shaping (M-FOS). M-FOS learns in a meta-game in which each meta-step is an episode of the underlying inner game. The meta-state consists of the inner policies, and the meta-policy produces a new inner policy to be used in the next episode. M-FOS then uses generic model-free optimisation methods to learn meta-policies that accomplish long-horizon opponent shaping. Empirically, M-FOS near-optimally exploits naive learners and other, more sophisticated algorithms from the literature. For example, to the best of our knowledge, it is the first method to learn the well-known Zero-Determinant (ZD) extortion strategy in the IPD. In the same settings, M-FOS leads to socially optimal outcomes under meta-self-play. Finally, we show that M-FOS can be scaled to high-dimensional settings.
translated by 谷歌翻译
我们研究了设计AI代理商的问题,该代理可以学习有效地与潜在的次优伴侣有效合作,同时无法访问联合奖励功能。这个问题被建模为合作焦论双代理马尔可夫决策过程。我们假设仅在游戏的Stackelberg制定中的两个代理中的第一个控制,其中第二代理正在作用,以便在鉴于第一代理的政策给出预期的效用。第一个代理人应该如何尽快学习联合奖励功能,因此联合政策尽可能接近最佳?在本文中,我们分析了如何在这一交互式的两个代理方案中获得对奖励函数的知识。我们展示当学习代理的策略对转换函数有显着影响时,可以有效地学习奖励功能。
translated by 谷歌翻译
当一个代理与多代理环境互动时,与以前看不见的各种对手打交道是一项挑战。建模对手的行为,目标或信念可以帮助代理人调整其政策以适应不同的对手。此外,考虑同时学习或能够推理的对手也很重要。但是,现有工作通常仅处理上述对手类型之一。在本文中,我们提出了基于模型的对手建模(MBOM)​​,该模型采用环境模型来适应各种对手。 MBOM在环境模型中模拟了递归推理过程,并想象一组改进对手政策。为了有效,准确地代表对手政策,MBOM根据与对手的真实行为的相似性进一步将想象中的对手政策混合在一起。从经验上讲,我们表明,MBOM比在各种任务中的现有方法更有效地适应,分别具有不同类型的对手,即固定的政策,NA \“ IVE”学习者和推理者。
translated by 谷歌翻译
Human and robot partners increasingly need to work together to perform tasks as a team. Robots designed for such collaboration must reason about how their task-completion strategies interplay with the behavior and skills of their human team members as they coordinate on achieving joint goals. Our goal in this work is to develop a computational framework for robot adaptation to human partners in human-robot team collaborations. We first present an algorithm for autonomously recognizing available task-completion strategies by observing human-human teams performing a collaborative task. By transforming team actions into low dimensional representations using hidden Markov models, we can identify strategies without prior knowledge. Robot policies are learned on each of the identified strategies to construct a Mixture-of-Experts model that adapts to the task strategies of unseen human partners. We evaluate our model on a collaborative cooking task using an Overcooked simulator. Results of an online user study with 125 participants demonstrate that our framework improves the task performance and collaborative fluency of human-agent teams, as compared to state of the art reinforcement learning methods.
translated by 谷歌翻译
In fighting games, individual players of the same skill level often exhibit distinct strategies from one another through their gameplay. Despite this, the majority of AI agents for fighting games have only a single strategy for each "level" of difficulty. To make AI opponents more human-like, we'd ideally like to see multiple different strategies at each level of difficulty, a concept we refer to as "multidimensional" difficulty. In this paper, we introduce a diversity-based deep reinforcement learning approach for generating a set of agents of similar difficulty that utilize diverse strategies. We find this approach outperforms a baseline trained with specialized, human-authored reward functions in both diversity and performance.
translated by 谷歌翻译
找到同一问题的不同解决方案是与创造力和对新颖情况的适应相关的智能的关键方面。在钢筋学习中,一套各种各样的政策对于勘探,转移,层次结构和鲁棒性有用。我们提出了各种各样的连续政策,一种发现在继承人功能空间中多样化的政策的方法,同时确保它们接近最佳。我们将问题形式形式化为受限制的马尔可夫决策过程(CMDP),目标是找到最大化多样性的政策,其特征在于内在的多样性奖励,同时对MDP的外在奖励保持近乎最佳。我们还分析了最近提出的稳健性和歧视奖励的绩效,并发现它们对程序的初始化敏感,并且可以收敛到次优溶液。为了缓解这一点,我们提出了新的明确多样性奖励,该奖励旨在最大限度地减少集合中策略的继承人特征之间的相关性。我们比较深度控制套件中的不同多样性机制,发现我们提出的明确多样性的类型对于发现不同的行为是重要的,例如不同的运动模式。
translated by 谷歌翻译
Imitation learning techniques aim to mimic human behavior in a given task. An agent (a learning machine) is trained to perform a task from demonstrations by learning a mapping between observations and actions. The idea of teaching by imitation has been around for many years, however, the field is gaining attention recently due to advances in computing and sensing as well as rising demand for intelligent applications. The paradigm of learning by imitation is gaining popularity because it facilitates teaching complex tasks with minimal expert knowledge of the tasks. Generic imitation learning methods could potentially reduce the problem of teaching a task to that of providing demonstrations; without the need for explicit programming or designing reward functions specific to the task. Modern sensors are able to collect and transmit high volumes of data rapidly, and processors with high computational power allow fast processing that maps the sensory data to actions in a timely manner. This opens the door for many potential AI applications that require real-time perception and reaction such as humanoid robots, self-driving vehicles, human computer interaction and computer games to name a few. However, specialized algorithms are needed to effectively and robustly learn models as learning by imitation poses its own set of challenges. In this paper, we survey imitation learning methods and present design options in different steps of the learning process. We introduce a background and motivation for the field as well as highlight challenges specific to the imitation problem. Methods for designing and evaluating imitation learning tasks are categorized and reviewed. Special attention is given to learning methods in robotics and games as these domains are the most popular in the literature and provide a wide array of problems and methodologies. We extensively discuss combining imitation learning approaches using different sources and methods, as well as incorporating other motion learning methods to enhance imitation. We also discuss the potential impact on industry, present major applications and highlight current and future research directions.
translated by 谷歌翻译
合作多代理设置中的标准问题设置是自我播放(SP),其目标是训练一个很好地合作的代理团队。但是,最佳SP政策通常包含任意惯例(“握手”),并且与其他受独立训练的代理商或人类不兼容。后者的Desiderata最近由Hu等人正式化。 2020年作为零射击协调(ZSC)设置,并以其其他游戏(OP)算法进行了部分解决,该算法在纸牌游戏Hanabi中显示出改进的ZSC和人类表现。 OP假设访问环境的对称性,并防止代理在训练过程中以相互不相容的方式破坏它们。但是,正如作者指出的那样,发现给定环境的对称性是一个计算困难的问题。取而代之的是,我们通过简单的K级推理(KLR)Costa Gomes等人表明。 2006年,我们可以同步训练所有级别,我们可以在哈纳比(Hanabi)获得竞争性的ZSC和临时团队表现,包括与类似人类的代理机器人配对。我们还引入了一种具有最佳响应(SYKLRBR)的新方法,即同步的K级推理,该方法通过共同培训最佳响应来进一步提高同步KLR的性能。
translated by 谷歌翻译
与人类合作需要迅速适应他们的个人优势,缺点和偏好。遗憾的是,大多数标准的多智能经纪增强学习技术,如自助(SP)或人口剧(PP),产生培训合作伙伴的代理商,并且对人类不完全概括。或者,研究人员可以使用行为克隆收集人体数据,培训人类模型,然后使用该模型培训“人类感知”代理(“行为克隆播放”或BCP)。虽然这种方法可以改善代理商的概括到新的人类共同球员,但它涉及首先收集大量人体数据的繁重和昂贵的步骤。在这里,我们研究如何培训与人类合作伙伴合作的代理的问题,而无需使用人类数据。我们认为这个问题的症结是制作各种培训伙伴。从竞争域中取得成功的多智能经纪人方法绘制灵感,我们发现令人惊讶的简单方法非常有效。我们培养我们的代理商合作伙伴作为对自行发行代理人口的最佳反应及其过去培训的过去检查点,这是我们呼叫虚构共同扮演(FCP)的方法。我们的实验专注于两位运动员协作烹饪模拟器,最近被提议作为与人类协调的挑战问题。我们发现,与新的代理商和人类合作伙伴配对时,FCP代理商会显着高于SP,PP和BCP。此外,人类还报告了强烈的主观偏好,以与所有基线与FCP代理合作。
translated by 谷歌翻译
我们研究自主代理如何学会从不同领域(例如不同环境或不同代理)中的示范中执行任务。这样的跨域模仿学习需要例如从人类专家的演示中培训人造代理。我们提出了一个可扩展的框架,该框架可以实现跨域模仿学习,而无需访问其他演示或进一步的领域知识。我们共同培训学习者的政策,并通过对抗性培训学习学习者和专家领域的映射。我们通过使用共同信息标准来找到包含与任务相关的信息的专家状态空间的嵌入,并且对域细节不变。此步骤大大简化了估计学习者和专家领域之间的映射,因此有助于端到端学习。我们证明了在相当不同的域之间成功转移了政策,而没有额外的示范,以及其他方法失败的情况。
translated by 谷歌翻译
Ad Hoc团队合作问题描述了代理商必须与以前看不见的代理商合作以实现共同目标的情况。对于在这些场景中成功的代理商,它必须具有合适的合作技能。可以通过使用域知识来设计代理人的行为来实现协作技巧的合作技能。但是,在复杂的域中,可能无法使用域知识。因此,值得探索如何直接从数据中学习合作技能。在这项工作中,我们在临时团队合作问题的背景下申请元加强学习(Meta-RL)制定。我们的经验结果表明,这种方法可以在两个合作环境中产生具有不同合作环境的强大合作社:社会合议和语言解释。(这是扩展抽象版的全文。)
translated by 谷歌翻译
The reinforcement learning paradigm is a popular way to address problems that have only limited environmental feedback, rather than correctly labeled examples, as is common in other machine learning contexts. While significant progress has been made to improve learning in a single task, the idea of transfer learning has only recently been applied to reinforcement learning tasks. The core idea of transfer is that experience gained in learning to perform one task can help improve learning performance in a related, but different, task. In this article we present a framework that classifies transfer learning methods in terms of their capabilities and goals, and then use it to survey the existing literature, as well as to suggest future directions for transfer learning work.
translated by 谷歌翻译
跨越多个领域的系统的自主权水平正在提高,但是这些系统仍然经历故障。减轻失败风险的一种方法是整合人类对自治系统的监督,并依靠人类在自治失败时控制人类。在这项工作中,我们通过行动建议制定了一种协作决策的方法,该建议在不控制系统的情况下改善行动选择。我们的方法通过通过建议合并共享的隐式信息来修改代理商的信念,并以比遵循建议的行动遵循更少的建议,以更少的建议来利用每个建议。我们假设协作代理人共享相同的目标,并通过有效的行动进行交流。通过假设建议的行动仅取决于国家,我们可以将建议的行动纳入对环境的独立观察。协作环境的假设使我们能够利用代理商的政策来估计行动建议的分布。我们提出了两种使用建议动作的方法,并通过模拟实验证明了该方法。提出的方法可以提高性能,同时对次优的建议也有鲁棒性。
translated by 谷歌翻译
我们提出了一种新型的参数化技能学习算法,旨在学习可转移的参数化技能并将其合成为新的动作空间,以支持长期任务中的有效学习。我们首先提出了新颖的学习目标 - 以轨迹为中心的多样性和平稳性 - 允许代理商能够重复使用的参数化技能。我们的代理商可以使用这些学习的技能来构建时间扩展的参数化行动马尔可夫决策过程,我们为此提出了一种层次的参与者 - 批判算法,旨在通过学习技能有效地学习高级控制政策。我们从经验上证明,所提出的算法使代理能够解决复杂的长途障碍源环境。
translated by 谷歌翻译
我们研究多个代理商在多目标环境的同时学习的问题。具体来说,我们考虑两种药剂重复播放一个多目标的正常形式的游戏。在这样的游戏,从联合行动所产生的收益都向量值。以基于效用的方法,我们假设效用函数存在映射向量标公用事业和考虑旨在最大限度地提高预期收益载体的效用代理。作为代理商不一定知道他们的对手的效用函数或策略,他们必须学会互动的最佳策略对方。为了帮助代理商在适当的解决办法到达,我们介绍四种新型偏好通信协议双方的合作以及自身利益的沟通。每一种方法描述了一个代理在他们的行动以及如何另一代理响应通信偏好的特定协议。这些协议是一组对不沟通基线代理5个标杆游戏随后对其进行评估。我们发现,偏好通信可以彻底改变学习的过程,并导致其没有在此设置先前观测环纳什均衡的出现。另外,还要在那里代理商必须学会当通信的通信方案。对于与纳什均衡游戏的代理,我们发现通信可以是有益的,但很难知道什么时候剂有不同的最佳平衡。如果不是这种情况,代理变得冷漠通信。在游戏没有纳什均衡,我们的结果表明,整个学习率的差异。当使用更快的学习者,我们观察到明确的沟通,在50%左右的时间变得越来越普遍,因为它可以帮助他们在学习的妥协联合政策。较慢的学生保留这种模式在较小的程度,但显示增加的冷漠。
translated by 谷歌翻译
In this paper, hypernetworks are trained to generate behaviors across a range of unseen task conditions, via a novel TD-based training objective and data from a set of near-optimal RL solutions for training tasks. This work relates to meta RL, contextual RL, and transfer learning, with a particular focus on zero-shot performance at test time, enabled by knowledge of the task parameters (also known as context). Our technical approach is based upon viewing each RL algorithm as a mapping from the MDP specifics to the near-optimal value function and policy and seek to approximate it with a hypernetwork that can generate near-optimal value functions and policies, given the parameters of the MDP. We show that, under certain conditions, this mapping can be considered as a supervised learning problem. We empirically evaluate the effectiveness of our method for zero-shot transfer to new reward and transition dynamics on a series of continuous control tasks from DeepMind Control Suite. Our method demonstrates significant improvements over baselines from multitask and meta RL approaches.
translated by 谷歌翻译
With the development of deep representation learning, the domain of reinforcement learning (RL) has become a powerful learning framework now capable of learning complex policies in high dimensional environments. This review summarises deep reinforcement learning (DRL) algorithms and provides a taxonomy of automated driving tasks where (D)RL methods have been employed, while addressing key computational challenges in real world deployment of autonomous driving agents. It also delineates adjacent domains such as behavior cloning, imitation learning, inverse reinforcement learning that are related but are not classical RL algorithms. The role of simulators in training agents, methods to validate, test and robustify existing solutions in RL are discussed.
translated by 谷歌翻译