当一个代理与多代理环境互动时,与以前看不见的各种对手打交道是一项挑战。建模对手的行为,目标或信念可以帮助代理人调整其政策以适应不同的对手。此外,考虑同时学习或能够推理的对手也很重要。但是,现有工作通常仅处理上述对手类型之一。在本文中,我们提出了基于模型的对手建模(MBOM)​​,该模型采用环境模型来适应各种对手。 MBOM在环境模型中模拟了递归推理过程,并想象一组改进对手政策。为了有效,准确地代表对手政策,MBOM根据与对手的真实行为的相似性进一步将想象中的对手政策混合在一起。从经验上讲,我们表明,MBOM比在各种任务中的现有方法更有效地适应,分别具有不同类型的对手,即固定的政策,NA \“ IVE”学习者和推理者。
translated by 谷歌翻译
Recently, model-based agents have achieved better performance than model-free ones using the same computational budget and training time in single-agent environments. However, due to the complexity of multi-agent systems, it is tough to learn the model of the environment. The significant compounding error may hinder the learning process when model-based methods are applied to multi-agent tasks. This paper proposes an implicit model-based multi-agent reinforcement learning method based on value decomposition methods. Under this method, agents can interact with the learned virtual environment and evaluate the current state value according to imagined future states in the latent space, making agents have the foresight. Our approach can be applied to any multi-agent value decomposition method. The experimental results show that our method improves the sample efficiency in different partially observable Markov decision process domains.
translated by 谷歌翻译
In general-sum games, the interaction of self-interested learning agents commonly leads to collectively worst-case outcomes, such as defect-defect in the iterated prisoner's dilemma (IPD). To overcome this, some methods, such as Learning with Opponent-Learning Awareness (LOLA), shape their opponents' learning process. However, these methods are myopic since only a small number of steps can be anticipated, are asymmetric since they treat other agents as naive learners, and require the use of higher-order derivatives, which are calculated through white-box access to an opponent's differentiable learning algorithm. To address these issues, we propose Model-Free Opponent Shaping (M-FOS). M-FOS learns in a meta-game in which each meta-step is an episode of the underlying inner game. The meta-state consists of the inner policies, and the meta-policy produces a new inner policy to be used in the next episode. M-FOS then uses generic model-free optimisation methods to learn meta-policies that accomplish long-horizon opponent shaping. Empirically, M-FOS near-optimally exploits naive learners and other, more sophisticated algorithms from the literature. For example, to the best of our knowledge, it is the first method to learn the well-known Zero-Determinant (ZD) extortion strategy in the IPD. In the same settings, M-FOS leads to socially optimal outcomes under meta-self-play. Finally, we show that M-FOS can be scaled to high-dimensional settings.
translated by 谷歌翻译
在多机构强化学习中,由其他代理人行动引起的环境的固有非平稳性给代理人独立学习良好政策带来了很大的困难。处理非平稳性的一种方法是对手建模,代理人考虑到其他代理人政策的影响。大多数现有的工作依赖于预测其他代理的行动或目标,或区分不同的政策。但是,这种建模无法同时捕获策略之间的相似性和差异,因此在概括到看不见的代理时无法提供足够的有用信息。为了解决这个问题,我们提出了一种一般方法,以了解其他代理商政策的表示,以便政策之间的距离是由表示距离之间的距离故意反映的,而策略距离是从训练期间从采样的共同行动分布中推断出来的。我们从经验上表明,以学习的策略表示为条件的代理可以很好地概括在三个多代理任务中看不见的代理。
translated by 谷歌翻译
强化学习(RL)通过与环境相互作用的试验过程解决顺序决策问题。尽管RL在玩复杂的视频游戏方面取得了巨大的成功,但在现实世界中,犯错误总是不希望的。为了提高样本效率并从而降低错误,据信基于模型的增强学习(MBRL)是一个有前途的方向,它建立了环境模型,在该模型中可以进行反复试验,而无需实际成本。在这项调查中,我们对MBRL进行了审查,重点是Deep RL的最新进展。对于非壮观环境,学到的环境模型与真实环境之间始终存在概括性错误。因此,非常重要的是分析环境模型中的政策培训与实际环境中的差异,这反过来又指导了更好的模型学习,模型使用和政策培训的算法设计。此外,我们还讨论了其他形式的RL,包括离线RL,目标条件RL,多代理RL和Meta-RL的最新进展。此外,我们讨论了MBRL在现实世界任务中的适用性和优势。最后,我们通过讨论MBRL未来发展的前景来结束这项调查。我们认为,MBRL在被忽略的现实应用程序中具有巨大的潜力和优势,我们希望这项调查能够吸引更多关于MBRL的研究。
translated by 谷歌翻译
独立的强化学习算法没有理论保证,用于在多代理设置中找到最佳策略。然而,在实践中,先前的作品报告了在某些域中的独立算法和其他方面的良好性能。此外,文献中缺乏对独立算法的优势和弱点的全面研究。在本文中,我们对四个Pettingzoo环境进行了独立算法的性能的实证比较,这些环境跨越了三种主要类别的多助理环境,即合作,竞争和混合。我们表明,在完全可观察的环境中,独立的算法可以在协作和竞争环境中与多代理算法进行同步。对于混合环境,我们表明通过独立算法培训的代理商学会单独执行,但未能学会与盟友合作并与敌人竞争。我们还表明,添加重复性提高了合作部分可观察环境中独立算法的学习。
translated by 谷歌翻译
We explore deep reinforcement learning methods for multi-agent domains. We begin by analyzing the difficulty of traditional algorithms in the multi-agent case: Q-learning is challenged by an inherent non-stationarity of the environment, while policy gradient suffers from a variance that increases as the number of agents grows. We then present an adaptation of actor-critic methods that considers action policies of other agents and is able to successfully learn policies that require complex multiagent coordination. Additionally, we introduce a training regimen utilizing an ensemble of policies for each agent that leads to more robust multi-agent policies. We show the strength of our approach compared to existing methods in cooperative as well as competitive scenarios, where agent populations are able to discover various physical and informational coordination strategies.
translated by 谷歌翻译
深度加强学习(RL)的最新进展导致许多2人零和游戏中的相当大的进展,如去,扑克和星际争霸。这种游戏的纯粹对抗性质允许概念上简单地应用R1方法。然而,现实世界的设置是许多代理商,代理交互是复杂的共同利益和竞争方面的混合物。我们认为外交,一个旨在突出由多种代理交互导致的困境的7人棋盘游戏。它还具有大型组合动作空间和同时移动,这对RL算法具有具有挑战性。我们提出了一个简单但有效的近似最佳响应操作员,旨在处理大型组合动作空间并同时移动。我们还介绍了一系列近似虚构游戏的政策迭代方法。通过这些方法,我们成功地将RL申请到外交:我们认为我们的代理商令人信服地令人信服地表明,游戏理论均衡分析表明新过程产生了一致的改进。
translated by 谷歌翻译
在过去的十年中,多智能经纪人强化学习(Marl)已经有了重大进展,但仍存在许多挑战,例如高样本复杂性和慢趋同稳定的政策,在广泛的部署之前需要克服,这是可能的。然而,在实践中,许多现实世界的环境已经部署了用于生成策略的次优或启发式方法。一个有趣的问题是如何最好地使用这些方法作为顾问,以帮助改善多代理领域的加强学习。在本文中,我们提供了一个原则的框架,用于将动作建议纳入多代理设置中的在线次优顾问。我们描述了在非传记通用随机游戏环境中提供多种智能强化代理(海军上将)的问题,并提出了两种新的基于Q学习的算法:海军上将决策(海军DM)和海军上将 - 顾问评估(Admiral-AE) ,这使我们能够通过适当地纳入顾问(Admiral-DM)的建议来改善学习,并评估顾问(Admiral-AE)的有效性。我们从理论上分析了算法,并在一般加上随机游戏中提供了关于他们学习的定点保证。此外,广泛的实验说明了这些算法:可以在各种环境中使用,具有对其他相关基线的有利相比的性能,可以扩展到大状态行动空间,并且对来自顾问的不良建议具有稳健性。
translated by 谷歌翻译
Ad Hoc团队合作问题描述了代理商必须与以前看不见的代理商合作以实现共同目标的情况。对于在这些场景中成功的代理商,它必须具有合适的合作技能。可以通过使用域知识来设计代理人的行为来实现协作技巧的合作技能。但是,在复杂的域中,可能无法使用域知识。因此,值得探索如何直接从数据中学习合作技能。在这项工作中,我们在临时团队合作问题的背景下申请元加强学习(Meta-RL)制定。我们的经验结果表明,这种方法可以在两个合作环境中产生具有不同合作环境的强大合作社:社会合议和语言解释。(这是扩展抽象版的全文。)
translated by 谷歌翻译
深度强化学习(DRL)和深度多机构的强化学习(MARL)在包括游戏AI,自动驾驶汽车,机器人技术等各种领域取得了巨大的成功。但是,众所周知,DRL和Deep MARL代理的样本效率低下,即使对于相对简单的问题设置,通常也需要数百万个相互作用,从而阻止了在实地场景中的广泛应用和部署。背后的一个瓶颈挑战是众所周知的探索问题,即如何有效地探索环境和收集信息丰富的经验,从而使政策学习受益于最佳研究。在稀疏的奖励,吵闹的干扰,长距离和非平稳的共同学习者的复杂环境中,这个问题变得更加具有挑战性。在本文中,我们对单格和多代理RL的现有勘探方法进行了全面的调查。我们通过确定有效探索的几个关键挑战开始调查。除了上述两个主要分支外,我们还包括其他具有不同思想和技术的著名探索方法。除了算法分析外,我们还对一组常用基准的DRL进行了全面和统一的经验比较。根据我们的算法和实证研究,我们终于总结了DRL和Deep Marl中探索的公开问题,并指出了一些未来的方向。
translated by 谷歌翻译
沟通可以帮助代理商获得有关他人的信息,以便可以学习更好的协调行为。一些现有的工作会与其他人传达预测的未来轨迹,希望能为其他人做些更好的协调能力提供线索。但是,当对代理人同步处理时,有时会发生循环依赖性,因此很难协调决策。在本文中,我们提出了一种新颖的交流方案,顺序通信(SEQCOMM)。 Seqcomm不同步(高级代理在低级阶段之前做出决定),并有两个通信阶段。在谈判阶段,代理通过传达观测的隐藏状态并比较意图的价值来确定决策的优先级,这是通过对环境动态进行建模来获得的。在发射阶段,高级代理商领导着做出决策并与低级代理商进行交流。从理论上讲,我们证明Seqcomm学到的政策可以单调地改善并融合。从经验上讲,我们表明SEQCOMM在各种多机构合作任务中都优于现有方法。
translated by 谷歌翻译
Current approaches to multi-agent cooperation rely heavily on centralized mechanisms or explicit communication protocols to ensure convergence. This paper studies the problem of distributed multi-agent learning without resorting to centralized components or explicit communication. It examines the use of distribution matching to facilitate the coordination of independent agents. In the proposed scheme, each agent independently minimizes the distribution mismatch to the corresponding component of a target visitation distribution. The theoretical analysis shows that under certain conditions, each agent minimizing its individual distribution mismatch allows the convergence to the joint policy that generated the target distribution. Further, if the target distribution is from a joint policy that optimizes a cooperative task, the optimal policy for a combination of this task reward and the distribution matching reward is the same joint policy. This insight is used to formulate a practical algorithm (DM$^2$), in which each individual agent matches a target distribution derived from concurrently sampled trajectories from a joint expert policy. Experimental validation on the StarCraft domain shows that combining (1) a task reward, and (2) a distribution matching reward for expert demonstrations for the same task, allows agents to outperform a naive distributed baseline. Additional experiments probe the conditions under which expert demonstrations need to be sampled to obtain the learning benefits.
translated by 谷歌翻译
合作多代理增强学习(MARL)的许多进步基于两个共同的设计原则:价值分解和参数共享。这种时尚的典型MARL算法将集中式Q功能分解为本地Q-NETWORKS,其中具有跨代理商共享的参数。这种算法范式可以实现集中培训和分散执行(CTDE),并在实践中提高了有效的学习。尽管有所有优势,我们还是重新审视这两个原则,并表明在某些情况下,例如具有高度多模式奖励格局,价值分解和参数共享的环境可能会出现问题,并导致不良结果。相比之下,在这些情况下,具有单个政策的政策梯度(PG)方法可证明融合到最佳解决方案,这部分支持了一些最近的经验观察,即PG在许多MARL测试台上都可以有效。受理论分析的启发,我们提出了实施多代理PG算法的实用建议作为星际争霸多代理挑战和Google Research Football。我们希望我们的见解可以使社区受益于发展更一般和更强大的MARL算法。查看我们的项目网站https://sites.google.com/view/revisiting-marl。
translated by 谷歌翻译
信息共享是建立团队认知并实现协调与合作的关键。高性能的人类团队也从战略性地采用迭代沟通和合理性的层次结构级别中受益,这意味着人类代理可以推理队友在决策中的行动。然而,多代理强化学习(MARL)的大多数先前工作不支持迭代的理性性,而只能鼓励跨性别的沟通,从而实现了次优的平衡合作策略。在这项工作中,我们表明,在优化政策梯度(PG)时,将代理商的政策重新制定为有条件依靠其邻近队友的政策,从而固有地提高了相互信息(MI)的最大程度。在有限的理性和认知层次结构理论下的决策观念的基础上,我们表明我们的修改后的PG方法不仅可以最大化本地代理人的奖励,而且还隐含着关于代理之间MI的理由,而无需任何明确的临时正则化术语。我们的方法Infopg在学习新兴的协作行为方面优于基准,并在分散的合作MARL任务中设定了最先进的工作。我们的实验通过在几个复杂的合作多代理域中实现较高的样品效率和更大的累积奖励来验证InfoPG的实用性。
translated by 谷歌翻译
用于分散执行的集中培训,其中代理商使用集中信息训练,但在线以分散的方式执行,在多智能体增强学习界中获得了普及。特别是,具有集中评论家和分散的演员的演员 - 批评方法是这个想法的常见实例。然而,即使它是许多算法的标准选择,也没有完全讨论和理解使用集中评论批读的影响。因此,我们正式分析集中和分散的批评批评方法,了解对评论家选择的影响。由于我们的理论使得不切实际的假设,我们还经验化地比较了广泛的环境中集中式和分散的批评方法来验证我们的理论并提供实用建议。我们展示了当前文献中集中评论家存在误解,并表明集中式评论家设计并不是严格用的,而是集中和分散的批评者具有不同的利弊,算法设计人员应该考虑到不同的利弊。
translated by 谷歌翻译
近端策略优化(PPO)是一种普遍存在的上利期内学习算法,但在多代理设置中的非政策学习算法所使用的算法明显少得多。这通常是由于认为PPO的样品效率明显低于多代理系统中的销售方法。在这项工作中,我们仔细研究了合作多代理设置中PPO的性能。我们表明,基于PPO的多代理算法在四个受欢迎的多代理测试台上取得了令人惊讶的出色表现:粒子世界环境,星际争霸多代理挑战,哈纳比挑战赛和Google Research Football,并具有最少的超参数调谐任何特定领域的算法修改或架构。重要的是,与强大的非政策方法相比,PPO通常在最终奖励和样本效率中都能取得竞争性或优越的结果。最后,通过消融研究,我们分析了对PPO的经验表现至关重要的实施和高参数因素,并就这些因素提供了具体的实用建议。我们的结果表明,在使用这些实践时,简单的基于PPO的方法在合作多代理增强学习中是强大的基线。源代码可在https://github.com/marlbenchmark/on-policy上发布。
translated by 谷歌翻译
分散的学习对合作多代理增强学习(MARL)表现出了巨大的希望。但是,非平稳性仍然是分散学习的重大挑战。在论文中,我们以最简单和基本的方式解决了非平稳性问题,并提出\ textit {多代理替代Q学习}(MA2QL),在那里,代理商轮流通过Q学习来更新其Q-函数。MA2QL是完全分散合作MARL的一种\ Textit {Minimalist}方法,但理论上是基础的。我们证明,当每个代理商在每个回合都保证$ \ varepsilon $ -Convergence时,他们的联合政策会收敛到NASH平衡。实际上,MA2QL仅需要对独立Q学习(IQL)的最小变化。我们经验评估MA2QL对各种合作的多代理任务。结果表明,MA2QL始终胜过IQL,尽管这种变化很小,但它验证了MA2QL的有效性。
translated by 谷歌翻译
建模其他代理的行为对于了解代理商互动和提出有效决策至关重要。代理模型的现有方法通常假设在执行期间对所建模代理的本地观测和所选操作的知识。为了消除这种假设,我们使用编码器解码器体系结构从受控代理的本地信息中提取表示。在培训期间使用所建模代理的观测和动作,我们的模型学会仅在受控剂的局部观察中提取有关所建模代理的表示。这些陈述用于增加受控代理的决定政策,这些政策通过深度加强学习培训;因此,在执行期间,策略不需要访问其他代理商的信息。我们提供合作,竞争和混合多种子体环境中的全面评估和消融研究,表明我们的方法比不使用所学习表示的基线方法实现更高的回报。
translated by 谷歌翻译
我们研究了强化学习(RL)中的策略扩展值函数近似器(PEVFA),其扩展了传统的价值函数近似器(VFA),不仅将输入的输入(和动作)而且是一个显式策略表示。这样的扩展使PEVFA能够同时保留多个策略的值,并带来吸引人的特性,即\ \ emph {策略之间的值泛化}。我们正式分析了广义政策迭代(GPI)下的价值概括。从理论和经验镜头来看,PEVFA提供的广义值估计值可能对连续策略的真实值较低的初始近似误差,这预计将在GPI期间提高连续值近似。基于上述线索,我们介绍了一种新的GPI形式,PEVFA,利用了政策改进路径的价值泛化。此外,我们向RL策略提出了一个表示学习框架,提供了从策略网络参数或状态操作对中学习有效策略嵌入的几种方法。在我们的实验中,我们评估了PEVFA和政策代表学习在几个Openai健身房连续控制任务中提供的价值概括的效果。对于算法实现的代表性实例,在GPI的GPI范式下重新实现的近端策略优化(PPO)在大多数环境中对其VANILLA对应物的绩效改进约为40 \%。
translated by 谷歌翻译