强化学习代理经常忘记过去的细节,特别是在延误或令人厌倦的任务之后。具有常见内存架构的代理努力召回和集成在过去事件的多个时间步行中,甚至会调用后跟分散的任务任务的单个时间戳的详细信息。为了解决这些限制,我们提出了一个分层块注意内存(HCAM),这有助于代理商详细记住过去。 HCAM通过将过去除以块来存储记忆,并通过首先在块的粗粗摘要上执行高级注意,然后在仅在最相关的块中进行详细关注。因此,具有HCAM的代理可以“精神上的时间旅行” - 记住过去的事件,并在不参加所有干预事件。我们展示了HCAM的代理基本上优于具有其他内存架构的代理,其任务需要长期回忆,保留或推理存储器。这些包括回顾一个对象隐藏在3D环境中的位置,迅速学习在新的邻域中有效地导航,以及快速学习和保留新的对象名称。具有HCAM的代理可以将其推断到任务序列,而不是培训的任务序列,甚至可以从元学习环境中概括为零射击,以维持跨情节的知识。 HCAM提高了代理样本效率,泛化和一般性(通过解决先前所需的专业架构的任务)。我们的工作是迈向可以学习,交互和适应复杂和时间扩展环境的代理的一步。
translated by 谷歌翻译
解释在人类学习中发挥着相当大的作用,特别是在仍然在形成抽象的主要挑战,以及了解世界的关系和因果结构的地区。在这里,我们探索强化学习代理人是否同样可以从解释中受益。我们概述了一系列关系任务,涉及选择一个在一个集合中奇数一个的对象(即,沿许多可能的特征尺寸之一的唯一)。奇数一张任务要求代理在一组对象中的多维关系上推理。我们展示了代理商不会仅从奖励中学习这些任务,但是当它们也培训以生成语言解释对象属性或选择正确或不正确时,实现> 90%的性能。在进一步的实验中,我们展示了预测的解释如何使代理能够从模糊,因果困难的训练中适当地推广,甚至可以学习执行实验干预以识别因果结构。我们表明解释有助于克服代理人来解决简单特征的趋势,并探讨解释的哪些方面使它们成为最有益的。我们的结果表明,从解释中学习是一种强大的原则,可以为培训更强大和一般机器学习系统提供有希望的道路。
translated by 谷歌翻译
正如人类和动物在自然世界中学习的那样,它们会遇到远非统一的实体,情况和事件的分布。通常,经常遇到相对较小的经历,而许多重要的体验很少发生。现实的高度紧密,重尾的本质构成了人类和动物通过不断发展的专业记忆系统所面临的特殊学习挑战。相比之下,大多数流行的RL环境和基准涉及属性,对象,情况或任务的大致变化。 RL算法将如何在环境特征分布的世界(如我们的)中表现出较不统一的分布?为了探讨这个问题,我们开发了三个互补的RL环境,在这些环境中,代理商的经验根据Zipfian(离散幂定律)分布而变化。在这些基准上,我们发现标准的深入RL体系结构和算法获得了对常见情况和任务的有用知识,但无法充分了解稀有的情况。为了更好地了解这一失败,我们探讨了如何调整当前方法的不同方面,以帮助提高罕见事件的性能,并表明RL目标功能,代理商的记忆系统和自我监督的学习目标都可以影响代理商的能力从罕见的体验中学习。这些结果共同表明,从偏斜的经验中进行强大的学习是应用模拟或实验室以外的深度RL方法的关键挑战,而我们的Zipfian环境为衡量未来的进步朝着这一目标提供了基础。
translated by 谷歌翻译
在流行媒体中,人造代理商的意识出现与同时实现人类或超人水平智力的那些相同的代理之间通常存在联系。在这项工作中,我们探讨了意识和智力之间这种看似直观的联系的有效性和潜在应用。我们通过研究与三种当代意识功能理论相关的认知能力:全球工作空间理论(GWT),信息生成理论(IGT)和注意力模式理论(AST)。我们发现,这三种理论都将有意识的功能专门与人类领域将军智力的某些方面联系起来。有了这个见解,我们转向人工智能领域(AI),发现尽管远未证明一般智能,但许多最先进的深度学习方法已经开始纳入三个功能的关键方面理论。确定了这一趋势后,我们以人类心理时间旅行的激励例子来提出方式,其中三种理论中每种理论的见解都可以合并为一个单一的统一和可实施的模型。鉴于三种功能理论中的每一种都可以通过认知能力来实现这一可能,因此,具有精神时间旅行的人造代理不仅具有比当前方法更大的一般智力,而且还与我们当前对意识功能作用的理解更加一致在人类中,这使其成为AI研究的有希望的近期目标。
translated by 谷歌翻译
Progress in continual reinforcement learning has been limited due to several barriers to entry: missing code, high compute requirements, and a lack of suitable benchmarks. In this work, we present CORA, a platform for Continual Reinforcement Learning Agents that provides benchmarks, baselines, and metrics in a single code package. The benchmarks we provide are designed to evaluate different aspects of the continual RL challenge, such as catastrophic forgetting, plasticity, ability to generalize, and sample-efficient learning. Three of the benchmarks utilize video game environments (Atari, Procgen, NetHack). The fourth benchmark, CHORES, consists of four different task sequences in a visually realistic home simulator, drawn from a diverse set of task and scene parameters. To compare continual RL methods on these benchmarks, we prepare three metrics in CORA: Continual Evaluation, Isolated Forgetting, and Zero-Shot Forward Transfer. Finally, CORA includes a set of performant, open-source baselines of existing algorithms for researchers to use and expand on. We release CORA and hope that the continual RL community can benefit from our contributions, to accelerate the development of new continual RL algorithms.
translated by 谷歌翻译
为了解决艰巨的任务,人类提出问题以从外部来源获取知识。相反,经典的加强学习者缺乏这种能力,并且常常诉诸探索性行为。这会加剧,因为很少的当今环境支持查询知识。为了研究如何通过语言教授代理来查询外部知识,我们首先介绍了两个新环境:基于网格世界的Q-babyai和基于文本的Q-Textworld。除了物理互动外,代理还可以查询专门针对这些环境的外部知识源来收集信息。其次,我们提出了“寻求知识”(AFK)代理,该代理学会生成语言命令以查询有助于解决任务的有意义的知识。 AFK利用非参数记忆,指针机制和情节探索奖金来解决(1)无关的信息,(2)一个较大的查询语言空间,(3)延迟奖励有意义的查询。广泛的实验表明,AFK代理在具有挑战性的Q-Babyai和Q-Textworld环境方面优于最近的基线。
translated by 谷歌翻译
We present a retrospective on the state of Embodied AI research. Our analysis focuses on 13 challenges presented at the Embodied AI Workshop at CVPR. These challenges are grouped into three themes: (1) visual navigation, (2) rearrangement, and (3) embodied vision-and-language. We discuss the dominant datasets within each theme, evaluation metrics for the challenges, and the performance of state-of-the-art models. We highlight commonalities between top approaches to the challenges and identify potential future directions for Embodied AI research.
translated by 谷歌翻译
Inspired by progress in large-scale language modeling, we apply a similar approach towards building a single generalist agent beyond the realm of text outputs. The agent, which we refer to as Gato, works as a multi-modal, multi-task, multi-embodiment generalist policy. The same network with the same weights can play Atari, caption images, chat, stack blocks with a real robot arm and much more, deciding based on its context whether to output text, joint torques, button presses, or other tokens. In this report we describe the model and the data, and document the current capabilities of Gato.
translated by 谷歌翻译
尽管深度强化学习(RL)最近取得了许多成功,但其方法仍然效率低下,这使得在数据方面解决了昂贵的许多问题。我们的目标是通过利用未标记的数据中的丰富监督信号来进行学习状态表示,以解决这一问题。本文介绍了三种不同的表示算法,可以访问传统RL算法使用的数据源的不同子集使用:(i)GRICA受到独立组件分析(ICA)的启发,并训练深层神经网络以输出统计独立的独立特征。输入。 Grica通过最大程度地减少每个功能与其他功能之间的相互信息来做到这一点。此外,格里卡仅需要未分类的环境状态。 (ii)潜在表示预测(LARP)还需要更多的上下文:除了要求状态作为输入外,它还需要先前的状态和连接它们的动作。该方法通过预测当前状态和行动的环境的下一个状态来学习状态表示。预测器与图形搜索算法一起使用。 (iii)重新培训通过训练深层神经网络来学习国家表示,以学习奖励功能的平滑版本。该表示形式用于预处理输入到深度RL,而奖励预测指标用于奖励成型。此方法仅需要环境中的状态奖励对学习表示表示。我们发现,每种方法都有其优势和缺点,并从我们的实验中得出结论,包括无监督的代表性学习在RL解决问题的管道中可以加快学习的速度。
translated by 谷歌翻译
我们提出了一个端到端,基于模型的深度加强学习代理,它在规划期间动态地参加其国家的相关部分。代理使用基于集的表示的瓶颈机制,以强制代理参加每个规划步骤的实体数量。在实验中,我们研究了具有不同挑战的几套定制环境的瓶颈机制。我们始终如一地观察到该设计允许规划代理通过参加相关对象来概括其在兼容的看不见环境中的学习任务解决能力,从而导致更好的分发概括性表现。
translated by 谷歌翻译
在嘈杂的互联网规模数据集上进行了预测,已对具有广泛的文本,图像和其他模式能力的培训模型进行了大量研究。但是,对于许多顺序决策域,例如机器人技术,视频游戏和计算机使用,公开可用的数据不包含以相同方式训练行为先验所需的标签。我们通过半监督的模仿学习将互联网规模的预处理扩展到顺序的决策域,其中代理通过观看在线未标记的视频来学习行动。具体而言,我们表明,使用少量标记的数据,我们可以训练一个足够准确的反向动力学模型,可以标记一个巨大的未标记在线数据来源 - 在这里,在线播放Minecraft的在线视频 - 然后我们可以从中训练一般行为先验。尽管使用了本地人类界面(鼠标和键盘为20Hz),但我们表明,这种行为先验具有非平凡的零射击功能,并且可以通过模仿学习和加强学习,可以对其进行微调,以进行硬探索任务。不可能通过增强学习从头开始学习。对于许多任务,我们的模型都表现出人类水平的性能,我们是第一个报告可以制作钻石工具的计算机代理,这些工具可以花费超过20分钟(24,000个环境动作)的游戏玩法来实现。
translated by 谷歌翻译
Real-world reinforcement learning tasks often involve some form of partial observability where the observations only give a partial or noisy view of the true state of the world. Such tasks typically require some form of memory, where the agent has access to multiple past observations, in order to perform well. One popular way to incorporate memory is by using a recurrent neural network to access the agent's history. However, recurrent neural networks in reinforcement learning are often fragile and difficult to train, susceptible to catastrophic forgetting and sometimes fail completely as a result. In this work, we propose Deep Transformer Q-Networks (DTQN), a novel architecture utilizing transformers and self-attention to encode an agent's history. DTQN is designed modularly, and we compare results against several modifications to our base model. Our experiments demonstrate the transformer can solve partially observable tasks faster and more stably than previous recurrent approaches.
translated by 谷歌翻译
Adequately assigning credit to actions for future outcomes based on their contributions is a long-standing open challenge in Reinforcement Learning. The assumptions of the most commonly used credit assignment method are disadvantageous in tasks where the effects of decisions are not immediately evident. Furthermore, this method can only evaluate actions that have been selected by the agent, making it highly inefficient. Still, no alternative methods have been widely adopted in the field. Hindsight Credit Assignment is a promising, but still unexplored candidate, which aims to solve the problems of both long-term and counterfactual credit assignment. In this thesis, we empirically investigate Hindsight Credit Assignment to identify its main benefits, and key points to improve. Then, we apply it to factored state representations, and in particular to state representations based on the causal structure of the environment. In this setting, we propose a variant of Hindsight Credit Assignment that effectively exploits a given causal structure. We show that our modification greatly decreases the workload of Hindsight Credit Assignment, making it more efficient and enabling it to outperform the baseline credit assignment method on various tasks. This opens the way to other methods based on given or learned causal structures.
translated by 谷歌翻译
我们开发了一种新的持续元学习方法,以解决连续多任务学习中的挑战。在此设置中,代理商的目标是快速通过任何任务序列实现高奖励。先前的Meta-Creenifiltive学习算法已经表现出有希望加速收购新任务的结果。但是,他们需要在培训期间访问所有任务。除了简单地将过去的经验转移到新任务,我们的目标是设计学习学习的持续加强学习算法,使用他们以前任务的经验更快地学习新任务。我们介绍了一种新的方法,连续的元策略搜索(Comps),通过以增量方式,在序列中的每个任务上,通过序列的每个任务来消除此限制,而无需重新访问先前的任务。 Comps持续重复两个子程序:使用RL学习新任务,并使用RL的经验完全离线Meta学习,为后续任务学习做好准备。我们发现,在若干挑战性连续控制任务的旧序列上,Comps优于持续的持续学习和非政策元增强方法。
translated by 谷歌翻译
在许多顺序任务中,模型需要记住遥远过去的相关事件,以做出正确的预测。不幸的是,基于梯度的训练的直接应用需要为序列的每个元素存储中间计算。如果一个序列由数千甚至数百万个元素组成,则需要过大的计算记忆,因此,学习非常长期的依赖性不可行。但是,通常只能考虑到时间上的局部信息来预测大多数序列元素。另一方面,仅在局部信息的情况下,受长期依赖性影响的预测稀疏,其特征是高不确定性。我们提出了一种新的培训方法,该方法允许一次学习长期依赖性,而无需一次通过整个序列进行反向传播梯度。该方法可以潜在地应用于任何基于梯度的序列学习。复发体系结构的磁化实现更好或与基线相媲美,同时需要大大减少计算内存。
translated by 谷歌翻译
深度加强学习(深RL)最近在开发泛化算法中看到了显着进展。但是,大多数算法都是针对单一类型的泛化设置。在这项工作中,我们研究了三个不同任务结构的概括:(a)由定期发生的物体运动的空间和时间组成组成的任务; (b)由积极的感知和导航定期发生的3D对象组成的任务; (c)任务由记住目标信息,通过定期发生的对象配置的序列。这些不同的任务结构都分享了合作性的潜在思想:任务完成始终涉及结合任务导向的感知和行为的反复性段。我们假设代理可以在任务结构中概括,如果它可以发现捕获这些重复任务段的表示。对于我们的任务,这对应于识别单个对象动作的表示,用于向3D对象导航,并通过对象配置导航。从认知科学中获取灵感,我们为代理人经验的经常性细分而言,“感知模式”的阶段代表。我们提出了参加经常性模块(农场)的功能,该功能学习了一种状态表示,其中感知模式分布在多个相对较小的复发模块中。我们比较农场到经常性的架构,从而利用空间关注,这将观察特征减少到空间位置的加权平均值。我们的实验表明,我们的特征注意力机制更好地使农场能够通过我们学习的各种对象的域来推广。
translated by 谷歌翻译
在这项工作中,我们提出了一种用于图像目标导航的内存调格方法。早期的尝试,包括基于RL的基于RL的方法和基于SLAM的方法的概括性能差,或者在姿势/深度传感器上稳定稳定。我们的方法基于一个基于注意力的端到端模型,该模型利用情节记忆来学习导航。首先,我们以自我监督的方式训练一个国家安置的网络,然后将其嵌入以前访问的状态中的代理商的记忆中。我们的导航政策通过注意机制利用了此信息。我们通过广泛的评估来验证我们的方法,并表明我们的模型在具有挑战性的吉布森数据集上建立了新的最新技术。此外,与相关工作形成鲜明对比的是,我们仅凭RGB输入就实现了这种令人印象深刻的性能,而无需访问其他信息,例如位置或深度。
translated by 谷歌翻译
人类通常通过将它们分解为更容易的子问题,然后结合子问题解决方案来解决复杂的问题。这种类型的组成推理允许在解决共享一部分基础构图结构的未来任务时重复使用子问题解决方案。在持续或终身的强化学习(RL)设置中,将知识分解为可重复使用的组件的能力将使代理通过利用积累的组成结构来快速学习新的RL任务。我们基于神经模块探索一种特定形式的组成形式,并提出了一组RL问题,可以直观地接受组成溶液。从经验上讲,我们证明了神经组成确实捕获了问题空间的基本结构。我们进一步提出了一种构图终身RL方法,该方法利用累积的神经成分来加速学习未来任务的学习,同时通过离线RL通过离线RL保留以前的RL,而不是重播经验。
translated by 谷歌翻译
基于模型的强化学习的关键承诺之一是使用世界内部模型拓展到新颖的环境和任务中的预测。然而,模型的代理商的泛化能力尚不清楚,因为现有的工作在基准测试概括时专注于无模型剂。在这里,我们明确测量模型的代理的泛化能力与其无模型对应物相比。我们专注于Muzero(Schrittwieser等,2020),强大的基于模型的代理商的分析,并评估其在过程和任务泛化方面的性能。我们确定了一个程序概括规划,自我监督代表学习和程序数据分集的三个因素 - 并表明通过组合这些技术,我们实现了普通的最先进的概括性和数据效率(Cobbe等人。,2019)。但是,我们发现这些因素并不总是为Meta-World中的任务泛化基准提供相同的益处(Yu等人,2019),表明转移仍然是一个挑战,可能需要不同的方法而不是程序泛化。总的来说,我们建议建立一个推广的代理需要超越单任务,无模型范例,并朝着在丰富,程序,多任务环境中培训的基于自我监督的模型的代理。
translated by 谷歌翻译
Reinforcement learning (RL) algorithms have achieved notable success in recent years, but still struggle with fundamental issues in long-term credit assignment. It remains difficult to learn in situations where success is contingent upon multiple critical steps that are distant in time from each other and from a sparse reward; as is often the case in real life. Moreover, how RL algorithms assign credit in these difficult situations is typically not coded in a way that can rapidly generalize to new situations. Here, we present an approach using offline contrastive learning, which we call contrastive introspection (ConSpec), that can be added to any existing RL algorithm and addresses both issues. In ConSpec, a contrastive loss is used during offline replay to identify invariances among successful episodes. This takes advantage of the fact that it is easier to retrospectively identify the small set of steps that success is contingent upon than it is to prospectively predict reward at every step taken in the environment. ConSpec stores this knowledge in a collection of prototypes summarizing the intermediate states required for success. During training, arrival at any state that matches these prototypes generates an intrinsic reward that is added to any external rewards. As well, the reward shaping provided by ConSpec can be made to preserve the optimal policy of the underlying RL agent. The prototypes in ConSpec provide two key benefits for credit assignment: (1) They enable rapid identification of all the critical states. (2) They do so in a readily interpretable manner, enabling out of distribution generalization when sensory features are altered. In summary, ConSpec is a modular system that can be added to any existing RL algorithm to improve its long-term credit assignment.
translated by 谷歌翻译