人类通常通过将它们分解为更容易的子问题,然后结合子问题解决方案来解决复杂的问题。这种类型的组成推理允许在解决共享一部分基础构图结构的未来任务时重复使用子问题解决方案。在持续或终身的强化学习(RL)设置中,将知识分解为可重复使用的组件的能力将使代理通过利用积累的组成结构来快速学习新的RL任务。我们基于神经模块探索一种特定形式的组成形式,并提出了一组RL问题,可以直观地接受组成溶液。从经验上讲,我们证明了神经组成确实捕获了问题空间的基本结构。我们进一步提出了一种构图终身RL方法,该方法利用累积的神经成分来加速学习未来任务的学习,同时通过离线RL通过离线RL保留以前的RL,而不是重播经验。
translated by 谷歌翻译
我们提出了Composuite,这是一种用于组成多任务增强学习(RL)的开源模拟机器人操纵基准。每个复合仪任务都需要特定的机器人组来操纵一个单独的对象,以实现一个任务目标,同时避免障碍物。该任务的这种组成定义赋予了Composuite具有两个非凡的属性。首先,改变机器人/对象/客观/障碍元素会导致数百个RL任务,每个任务都需要有意义的不同行为。其次,可以专门评估RL方法,以了解其学习任务的组成结构的能力。后者在功能上分解问题的能力将使智能代理能够识别和利用学习任务之间的共同点,以处理大量高度多样化的问题。我们在各种培训环境中基准了现有的单任务,多任务和组成学习算法,并评估其在构图上概括到看不见的任务的能力。我们的评估暴露了现有RL方法在组成方面的缺点,并为调查开辟了新的途径。
translated by 谷歌翻译
Lifelong learning aims to create AI systems that continuously and incrementally learn during a lifetime, similar to biological learning. Attempts so far have met problems, including catastrophic forgetting, interference among tasks, and the inability to exploit previous knowledge. While considerable research has focused on learning multiple input distributions, typically in classification, lifelong reinforcement learning (LRL) must also deal with variations in the state and transition distributions, and in the reward functions. Modulating masks, recently developed for classification, are particularly suitable to deal with such a large spectrum of task variations. In this paper, we adapted modulating masks to work with deep LRL, specifically PPO and IMPALA agents. The comparison with LRL baselines in both discrete and continuous RL tasks shows competitive performance. We further investigated the use of a linear combination of previously learned masks to exploit previous knowledge when learning new tasks: not only is learning faster, the algorithm solves tasks that we could not otherwise solve from scratch due to extremely sparse rewards. The results suggest that RL with modulating masks is a promising approach to lifelong learning, to the composition of knowledge to learn increasingly complex tasks, and to knowledge reuse for efficient and faster learning.
translated by 谷歌翻译
现实的操纵任务要求机器人与具有长时间运动动作序列的环境相互作用。尽管最近出现了深厚的强化学习方法,这是自动化操作行为的有希望的范式,但由于勘探负担,它们通常在长途任务中缺乏。这项工作介绍了操纵原始增强的强化学习(Maple),这是一个学习框架,可通过预定的行为原始库来增强标准强化学习算法。这些行为原始素是专门实现操纵目标(例如抓住和推动)的强大功能模块。为了使用这些异质原始素,我们制定了涉及原语的层次结构策略,并使用输入参数实例化执行。我们证明,枫树的表现优于基线方法,通过一系列模拟的操纵任务的大幅度。我们还量化了学习行为的组成结构,并突出了我们方法将策略转移到新任务变体和物理硬件的能力。视频和代码可从https://ut-aut-autin-rpl.github.io/maple获得
translated by 谷歌翻译
机器人和与世界相互作用或互动的机器人和智能系统越来越多地被用来自动化各种任务。这些系统完成这些任务的能力取决于构成机器人物理及其传感器物体的机械和电气部件,例如,感知算法感知环境,并计划和控制算法以生产和控制算法来生产和控制算法有意义的行动。因此,通常有必要在设计具体系统时考虑这些组件之间的相互作用。本文探讨了以端到端方式对机器人系统进行任务驱动的合作的工作,同时使用推理或控制算法直接优化了系统的物理组件以进行任务性能。我们首先考虑直接优化基于信标的本地化系统以达到本地化准确性的问题。设计这样的系统涉及将信标放置在整个环境中,并通过传感器读数推断位置。在我们的工作中,我们开发了一种深度学习方法,以直接优化信标的放置和位置推断以达到本地化精度。然后,我们将注意力转移到了由任务驱动的机器人及其控制器优化的相关问题上。在我们的工作中,我们首先提出基于多任务增强学习的数据有效算法。我们的方法通过利用能够在物理设计的空间上概括设计条件的控制器,有效地直接优化了物理设计和控制参数,以直接优化任务性能。然后,我们对此进行跟进,以允许对离散形态参数(例如四肢的数字和配置)进行优化。最后,我们通过探索优化的软机器人的制造和部署来得出结论。
translated by 谷歌翻译
The ability to effectively reuse prior knowledge is a key requirement when building general and flexible Reinforcement Learning (RL) agents. Skill reuse is one of the most common approaches, but current methods have considerable limitations.For example, fine-tuning an existing policy frequently fails, as the policy can degrade rapidly early in training. In a similar vein, distillation of expert behavior can lead to poor results when given sub-optimal experts. We compare several common approaches for skill transfer on multiple domains including changes in task and system dynamics. We identify how existing methods can fail and introduce an alternative approach to mitigate these problems. Our approach learns to sequence existing temporally-extended skills for exploration but learns the final policy directly from the raw experience. This conceptual split enables rapid adaptation and thus efficient data collection but without constraining the final solution.It significantly outperforms many classical methods across a suite of evaluation tasks and we use a broad set of ablations to highlight the importance of differentc omponents of our method.
translated by 谷歌翻译
深度强化学习(RL)导致了许多最近和开创性的进步。但是,这些进步通常以培训的基础体系结构的规模增加以及用于训练它们的RL算法的复杂性提高,而均以增加规模的成本。这些增长反过来又使研究人员更难迅速原型新想法或复制已发表的RL算法。为了解决这些问题,这项工作描述了ACME,这是一个用于构建新型RL算法的框架,这些框架是专门设计的,用于启用使用简单的模块化组件构建的代理,这些组件可以在各种执行范围内使用。尽管ACME的主要目标是为算法开发提供一个框架,但第二个目标是提供重要或最先进算法的简单参考实现。这些实现既是对我们的设计决策的验证,也是对RL研究中可重复性的重要贡献。在这项工作中,我们描述了ACME内部做出的主要设计决策,并提供了有关如何使用其组件来实施各种算法的进一步详细信息。我们的实验为许多常见和最先进的算法提供了基准,并显示了如何为更大且更复杂的环境扩展这些算法。这突出了ACME的主要优点之一,即它可用于实现大型,分布式的RL算法,这些算法可以以较大的尺度运行,同时仍保持该实现的固有可读性。这项工作提出了第二篇文章的版本,恰好与模块化的增加相吻合,对离线,模仿和从演示算法学习以及作为ACME的一部分实现的各种新代理。
translated by 谷歌翻译
我们开发了一种新的持续元学习方法,以解决连续多任务学习中的挑战。在此设置中,代理商的目标是快速通过任何任务序列实现高奖励。先前的Meta-Creenifiltive学习算法已经表现出有希望加速收购新任务的结果。但是,他们需要在培训期间访问所有任务。除了简单地将过去的经验转移到新任务,我们的目标是设计学习学习的持续加强学习算法,使用他们以前任务的经验更快地学习新任务。我们介绍了一种新的方法,连续的元策略搜索(Comps),通过以增量方式,在序列中的每个任务上,通过序列的每个任务来消除此限制,而无需重新访问先前的任务。 Comps持续重复两个子程序:使用RL学习新任务,并使用RL的经验完全离线Meta学习,为后续任务学习做好准备。我们发现,在若干挑战性连续控制任务的旧序列上,Comps优于持续的持续学习和非政策元增强方法。
translated by 谷歌翻译
我们研究了复杂几何物体的机器人堆叠问题。我们提出了一个挑战和多样化的这些物体,这些物体被精心设计,以便要求超出简单的“拾取”解决方案之外的策略。我们的方法是加强学习(RL)方法与基于视觉的互动政策蒸馏和模拟到现实转移相结合。我们的学习政策可以有效地处理现实世界中的多个对象组合,并展示各种各样的堆叠技能。在一个大型的实验研究中,我们调查在模拟中学习这种基于视觉的基于视觉的代理的选择,以及对真实机器人的最佳转移产生了什么影响。然后,我们利用这些策略收集的数据并通过离线RL改善它们。我们工作的视频和博客文章作为补充材料提供。
translated by 谷歌翻译
A long-standing challenge in artificial intelligence is lifelong learning. In lifelong learning, many tasks are presented in sequence and learners must efficiently transfer knowledge between tasks while avoiding catastrophic forgetting over long lifetimes. On these problems, policy reuse and other multi-policy reinforcement learning techniques can learn many tasks. However, they can generate many temporary or permanent policies, resulting in memory issues. Consequently, there is a need for lifetime-scalable methods that continually refine a policy library of a pre-defined size. This paper presents a first approach to lifetime-scalable policy reuse. To pre-select the number of policies, a notion of task capacity, the maximal number of tasks that a policy can accurately solve, is proposed. To evaluate lifetime policy reuse using this method, two state-of-the-art single-actor base-learners are compared: 1) a value-based reinforcement learner, Deep Q-Network (DQN) or Deep Recurrent Q-Network (DRQN); and 2) an actor-critic reinforcement learner, Proximal Policy Optimisation (PPO) with or without Long Short-Term Memory layer. By selecting the number of policies based on task capacity, D(R)QN achieves near-optimal performance with 6 policies in a 27-task MDP domain and 9 policies in an 18-task POMDP domain; with fewer policies, catastrophic forgetting and negative transfer are observed. Due to slow, monotonic improvement, PPO requires fewer policies, 1 policy for the 27-task domain and 4 policies for the 18-task domain, but it learns the tasks with lower accuracy than D(R)QN. These findings validate lifetime-scalable policy reuse and suggest using D(R)QN for larger and PPO for smaller library sizes.
translated by 谷歌翻译
从意外的外部扰动中恢复的能力是双模型运动的基本机动技能。有效的答复包括不仅可以恢复平衡并保持稳定性的能力,而且在平衡恢复物质不可行时,也可以保证安全的方式。对于与双式运动有关的机器人,例如人形机器人和辅助机器人设备,可帮助人类行走,设计能够提供这种稳定性和安全性的控制器可以防止机器人损坏或防止伤害相关的医疗费用。这是一个具有挑战性的任务,因为它涉及用触点产生高维,非线性和致动系统的高动态运动。尽管使用基于模型和优化方法的前进方面,但诸如广泛领域知识的要求,诸如较大的计算时间和有限的动态变化的鲁棒性仍然会使这个打开问题。在本文中,为了解决这些问题,我们开发基于学习的算法,能够为两种不同的机器人合成推送恢复控制政策:人形机器人和有助于双模型运动的辅助机器人设备。我们的工作可以分为两个密切相关的指示:1)学习人形机器人的安全下降和预防策略,2)使用机器人辅助装置学习人类的预防策略。为实现这一目标,我们介绍了一套深度加强学习(DRL)算法,以学习使用这些机器人时提高安全性的控制策略。
translated by 谷歌翻译
The reinforcement learning paradigm is a popular way to address problems that have only limited environmental feedback, rather than correctly labeled examples, as is common in other machine learning contexts. While significant progress has been made to improve learning in a single task, the idea of transfer learning has only recently been applied to reinforcement learning tasks. The core idea of transfer is that experience gained in learning to perform one task can help improve learning performance in a related, but different, task. In this article we present a framework that classifies transfer learning methods in terms of their capabilities and goals, and then use it to survey the existing literature, as well as to suggest future directions for transfer learning work.
translated by 谷歌翻译
Meta-reinforcement learning algorithms can enable robots to acquire new skills much more quickly, by leveraging prior experience to learn how to learn. However, much of the current research on meta-reinforcement learning focuses on task distributions that are very narrow. For example, a commonly used meta-reinforcement learning benchmark uses different running velocities for a simulated robot as different tasks. When policies are meta-trained on such narrow task distributions, they cannot possibly generalize to more quickly acquire entirely new tasks. Therefore, if the aim of these methods is enable faster acquisition of entirely new behaviors, we must evaluate them on task distributions that are sufficiently broad to enable generalization to new behaviors. In this paper, we propose an open-source simulated benchmark for meta-reinforcement learning and multitask learning consisting of 50 distinct robotic manipulation tasks. Our aim is to make it possible to develop algorithms that generalize to accelerate the acquisition of entirely new, held-out tasks. We evaluate 7 state-of-the-art meta-reinforcement learning and multi-task learning algorithms on these tasks. Surprisingly, while each task and its variations (e.g., with different object positions) can be learned with reasonable success, these algorithms struggle to learn with multiple tasks at the same time, even with as few as ten distinct training tasks. Our analysis and open-source environments pave the way for future research in multi-task learning and meta-learning that can enable meaningful generalization, thereby unlocking the full potential of these methods. 1
translated by 谷歌翻译
稀疏奖励学习通常在加强学习(RL)方面效率低下。 Hindsight Experience重播(她)已显示出一种有效的解决方案,可以处理低样本效率,这是由于目标重新标记而导致的稀疏奖励效率。但是,她仍然有一个隐含的虚拟阳性稀疏奖励问题,这是由于实现目标而引起的,尤其是对于机器人操纵任务而言。为了解决这个问题,我们提出了一种新型的无模型连续RL算法,称为Relay-HER(RHER)。提出的方法首先分解并重新布置原始的长马任务,以增量复杂性为新的子任务。随后,多任务网络旨在以复杂性的上升顺序学习子任务。为了解决虚拟阳性的稀疏奖励问题,我们提出了一种随机混合的探索策略(RME),在该策略中,在复杂性较低的人的指导下,较高复杂性的子任务的实现目标很快就会改变。实验结果表明,在五个典型的机器人操纵任务中,与香草盖相比,RHER样品效率的显着提高,包括Push,Pickandplace,抽屉,插入物和InstaclePush。提出的RHER方法还应用于从头开始的物理机器人上的接触式推送任务,成功率仅使用250集达到10/10。
translated by 谷歌翻译
AI的一个关键挑战是构建体现的系统,该系统在动态变化的环境中运行。此类系统必须适应更改任务上下文并持续学习。虽然标准的深度学习系统实现了最先进的静态基准的结果,但它们通常在动态方案中挣扎。在这些设置中,来自多个上下文的错误信号可能会彼此干扰,最终导致称为灾难性遗忘的现象。在本文中,我们将生物学启发的架构调查为对这些问题的解决方案。具体而言,我们表明树突和局部抑制系统的生物物理特性使网络能够以特定于上下文的方式动态限制和路由信息。我们的主要贡献如下。首先,我们提出了一种新颖的人工神经网络架构,该架构将活跃的枝形和稀疏表示融入了标准的深度学习框架中。接下来,我们在需要任务的适应性的两个单独的基准上研究这种架构的性能:Meta-World,一个机器人代理必须学习同时解决各种操纵任务的多任务强化学习环境;和一个持续的学习基准,其中模型的预测任务在整个训练中都会发生变化。对两个基准的分析演示了重叠但不同和稀疏的子网的出现,允许系统流动地使用最小的遗忘。我们的神经实现标志在单一架构上第一次在多任务和持续学习设置上取得了竞争力。我们的研究揭示了神经元的生物学特性如何通知深度学习系统,以解决通常不可能对传统ANN来解决的动态情景。
translated by 谷歌翻译
Progress in continual reinforcement learning has been limited due to several barriers to entry: missing code, high compute requirements, and a lack of suitable benchmarks. In this work, we present CORA, a platform for Continual Reinforcement Learning Agents that provides benchmarks, baselines, and metrics in a single code package. The benchmarks we provide are designed to evaluate different aspects of the continual RL challenge, such as catastrophic forgetting, plasticity, ability to generalize, and sample-efficient learning. Three of the benchmarks utilize video game environments (Atari, Procgen, NetHack). The fourth benchmark, CHORES, consists of four different task sequences in a visually realistic home simulator, drawn from a diverse set of task and scene parameters. To compare continual RL methods on these benchmarks, we prepare three metrics in CORA: Continual Evaluation, Isolated Forgetting, and Zero-Shot Forward Transfer. Finally, CORA includes a set of performant, open-source baselines of existing algorithms for researchers to use and expand on. We release CORA and hope that the continual RL community can benefit from our contributions, to accelerate the development of new continual RL algorithms.
translated by 谷歌翻译
最先进的多机构增强学习(MARL)方法为各种复杂问题提供了有希望的解决方案。然而,这些方法都假定代理执行同步的原始操作执行,因此它们不能真正可扩展到长期胜利的真实世界多代理/机器人任务,这些任务固有地要求代理/机器人以异步的理由,涉及有关高级动作选择的理由。不同的时间。宏观行动分散的部分可观察到的马尔可夫决策过程(MACDEC-POMDP)是在完全合作的多代理任务中不确定的异步决策的一般形式化。在本论文中,我们首先提出了MacDec-Pomdps的一组基于价值的RL方法,其中允许代理在三个范式中使用宏观成果功能执行异步学习和决策:分散学习和控制,集中学习,集中学习和控制,以及分散执行的集中培训(CTDE)。在上述工作的基础上,我们在三个训练范式下制定了一组基于宏观行动的策略梯度算法,在该训练范式下,允许代理以异步方式直接优化其参数化策略。我们在模拟和真实的机器人中评估了我们的方法。经验结果证明了我们在大型多代理问题中的方法的优势,并验证了我们算法在学习具有宏观actions的高质量和异步溶液方面的有效性。
translated by 谷歌翻译
Adequately assigning credit to actions for future outcomes based on their contributions is a long-standing open challenge in Reinforcement Learning. The assumptions of the most commonly used credit assignment method are disadvantageous in tasks where the effects of decisions are not immediately evident. Furthermore, this method can only evaluate actions that have been selected by the agent, making it highly inefficient. Still, no alternative methods have been widely adopted in the field. Hindsight Credit Assignment is a promising, but still unexplored candidate, which aims to solve the problems of both long-term and counterfactual credit assignment. In this thesis, we empirically investigate Hindsight Credit Assignment to identify its main benefits, and key points to improve. Then, we apply it to factored state representations, and in particular to state representations based on the causal structure of the environment. In this setting, we propose a variant of Hindsight Credit Assignment that effectively exploits a given causal structure. We show that our modification greatly decreases the workload of Hindsight Credit Assignment, making it more efficient and enabling it to outperform the baseline credit assignment method on various tasks. This opens the way to other methods based on given or learned causal structures.
translated by 谷歌翻译
Adversarial imitation learning (AIL) has become a popular alternative to supervised imitation learning that reduces the distribution shift suffered by the latter. However, AIL requires effective exploration during an online reinforcement learning phase. In this work, we show that the standard, naive approach to exploration can manifest as a suboptimal local maximum if a policy learned with AIL sufficiently matches the expert distribution without fully learning the desired task. This can be particularly catastrophic for manipulation tasks, where the difference between an expert and a non-expert state-action pair is often subtle. We present Learning from Guided Play (LfGP), a framework in which we leverage expert demonstrations of multiple exploratory, auxiliary tasks in addition to a main task. The addition of these auxiliary tasks forces the agent to explore states and actions that standard AIL may learn to ignore. Additionally, this particular formulation allows for the reusability of expert data between main tasks. Our experimental results in a challenging multitask robotic manipulation domain indicate that LfGP significantly outperforms both AIL and behaviour cloning, while also being more expert sample efficient than these baselines. To explain this performance gap, we provide further analysis of a toy problem that highlights the coupling between a local maximum and poor exploration, and also visualize the differences between the learned models from AIL and LfGP.
translated by 谷歌翻译
深度加强学习概括(RL)的研究旨在产生RL算法,其政策概括为在部署时间进行新的未经调整情况,避免对其培训环境的过度接受。如果我们要在现实世界的情景中部署强化学习算法,那么解决这一点至关重要,那么环境将多样化,动态和不可预测。该调查是这个新生领域的概述。我们为讨论不同的概括问题提供统一的形式主义和术语,在以前的作品上建立不同的概括问题。我们继续对现有的基准进行分类,以及用于解决泛化问题的当前方法。最后,我们提供了对现场当前状态的关键讨论,包括未来工作的建议。在其他结论之外,我们认为,采取纯粹的程序内容生成方法,基准设计不利于泛化的进展,我们建议快速在线适应和将RL特定问题解决作为未来泛化方法的一些领域,我们推荐在UniTexplorated问题设置中构建基准测试,例如离线RL泛化和奖励函数变化。
translated by 谷歌翻译