在许多顺序任务中,模型需要记住遥远过去的相关事件,以做出正确的预测。不幸的是,基于梯度的训练的直接应用需要为序列的每个元素存储中间计算。如果一个序列由数千甚至数百万个元素组成,则需要过大的计算记忆,因此,学习非常长期的依赖性不可行。但是,通常只能考虑到时间上的局部信息来预测大多数序列元素。另一方面,仅在局部信息的情况下,受长期依赖性影响的预测稀疏,其特征是高不确定性。我们提出了一种新的培训方法,该方法允许一次学习长期依赖性,而无需一次通过整个序列进行反向传播梯度。该方法可以潜在地应用于任何基于梯度的序列学习。复发体系结构的磁化实现更好或与基线相媲美,同时需要大大减少计算内存。
translated by 谷歌翻译
尽管深度强化学习(RL)最近取得了许多成功,但其方法仍然效率低下,这使得在数据方面解决了昂贵的许多问题。我们的目标是通过利用未标记的数据中的丰富监督信号来进行学习状态表示,以解决这一问题。本文介绍了三种不同的表示算法,可以访问传统RL算法使用的数据源的不同子集使用:(i)GRICA受到独立组件分析(ICA)的启发,并训练深层神经网络以输出统计独立的独立特征。输入。 Grica通过最大程度地减少每个功能与其他功能之间的相互信息来做到这一点。此外,格里卡仅需要未分类的环境状态。 (ii)潜在表示预测(LARP)还需要更多的上下文:除了要求状态作为输入外,它还需要先前的状态和连接它们的动作。该方法通过预测当前状态和行动的环境的下一个状态来学习状态表示。预测器与图形搜索算法一起使用。 (iii)重新培训通过训练深层神经网络来学习国家表示,以学习奖励功能的平滑版本。该表示形式用于预处理输入到深度RL,而奖励预测指标用于奖励成型。此方法仅需要环境中的状态奖励对学习表示表示。我们发现,每种方法都有其优势和缺点,并从我们的实验中得出结论,包括无监督的代表性学习在RL解决问题的管道中可以加快学习的速度。
translated by 谷歌翻译
Advances in reinforcement learning (RL) often rely on massive compute resources and remain notoriously sample inefficient. In contrast, the human brain is able to efficiently learn effective control strategies using limited resources. This raises the question whether insights from neuroscience can be used to improve current RL methods. Predictive processing is a popular theoretical framework which maintains that the human brain is actively seeking to minimize surprise. We show that recurrent neural networks which predict their own sensory states can be leveraged to minimise surprise, yielding substantial gains in cumulative reward. Specifically, we present the Predictive Processing Proximal Policy Optimization (P4O) agent; an actor-critic reinforcement learning agent that applies predictive processing to a recurrent variant of the PPO algorithm by integrating a world model in its hidden state. P4O significantly outperforms a baseline recurrent variant of the PPO algorithm on multiple Atari games using a single GPU. It also outperforms other state-of-the-art agents given the same wall-clock time and exceeds human gamer performance on multiple games including Seaquest, which is a particularly challenging environment in the Atari domain. Altogether, our work underscores how insights from the field of neuroscience may support the development of more capable and efficient artificial agents.
translated by 谷歌翻译
强化学习代理经常忘记过去的细节,特别是在延误或令人厌倦的任务之后。具有常见内存架构的代理努力召回和集成在过去事件的多个时间步行中,甚至会调用后跟分散的任务任务的单个时间戳的详细信息。为了解决这些限制,我们提出了一个分层块注意内存(HCAM),这有助于代理商详细记住过去。 HCAM通过将过去除以块来存储记忆,并通过首先在块的粗粗摘要上执行高级注意,然后在仅在最相关的块中进行详细关注。因此,具有HCAM的代理可以“精神上的时间旅行” - 记住过去的事件,并在不参加所有干预事件。我们展示了HCAM的代理基本上优于具有其他内存架构的代理,其任务需要长期回忆,保留或推理存储器。这些包括回顾一个对象隐藏在3D环境中的位置,迅速学习在新的邻域中有效地导航,以及快速学习和保留新的对象名称。具有HCAM的代理可以将其推断到任务序列,而不是培训的任务序列,甚至可以从元学习环境中概括为零射击,以维持跨情节的知识。 HCAM提高了代理样本效率,泛化和一般性(通过解决先前所需的专业架构的任务)。我们的工作是迈向可以学习,交互和适应复杂和时间扩展环境的代理的一步。
translated by 谷歌翻译
Adequately assigning credit to actions for future outcomes based on their contributions is a long-standing open challenge in Reinforcement Learning. The assumptions of the most commonly used credit assignment method are disadvantageous in tasks where the effects of decisions are not immediately evident. Furthermore, this method can only evaluate actions that have been selected by the agent, making it highly inefficient. Still, no alternative methods have been widely adopted in the field. Hindsight Credit Assignment is a promising, but still unexplored candidate, which aims to solve the problems of both long-term and counterfactual credit assignment. In this thesis, we empirically investigate Hindsight Credit Assignment to identify its main benefits, and key points to improve. Then, we apply it to factored state representations, and in particular to state representations based on the causal structure of the environment. In this setting, we propose a variant of Hindsight Credit Assignment that effectively exploits a given causal structure. We show that our modification greatly decreases the workload of Hindsight Credit Assignment, making it more efficient and enabling it to outperform the baseline credit assignment method on various tasks. This opens the way to other methods based on given or learned causal structures.
translated by 谷歌翻译
在部分可观察到的马尔可夫决策过程(POMDP)中,代理通常使用过去的表示来近似基础MDP。我们建议利用冷冻验证的语言变压器(PLT)进行病史表示和压缩,以提高样品效率。为了避免对变压器进行训练,我们引入了Frozenhopfield,该菲尔德自动将观察结果与预处理的令牌嵌入相关联。为了形成这些关联,现代的Hopfield网络存储了这些令牌嵌入,这些嵌入是通过查询获得的查询来检索的,这些嵌入者通过随机但固定的观察结果获得。我们的新方法Helm,启用了Actor-Critic网络体系结构,该架构包含用于历史记录表示的历史模块的审计语言变压器。由于不需要学习过去的代表,因此掌舵比竞争对手要高得多。在Miligrid和Procgen环境上,Helm掌舵取得了新的最新结果。我们的代码可在https://github.com/ml-jku/helm上找到。
translated by 谷歌翻译
在部分可观察域中的预测和规划的常见方法是使用经常性的神经网络(RNN),其理想地开发和维持关于隐藏,任务相关因素的潜伏。我们假设物理世界中的许多这些隐藏因素随着时间的推移是恒定的,而只是稀疏变化。为研究这一假设,我们提出了Gated $ L_0 $正规化的动态(Gatel0rd),一种新的经常性架构,它包含归纳偏差,以保持稳定,疏口改变潜伏状态。通过新颖的内部门控功能和潜在状态变化的$ l_0 $ norm的惩罚来实现偏差。我们证明Gatel0rd可以在各种部分可观察到的预测和控制任务中与最先进的RNN竞争或优于最先进的RNN。 Gatel0rd倾向于编码环境的基础生成因子,忽略了虚假的时间依赖性,并概括了更好的,提高了基于模型的规划和加强学习任务中的采样效率和整体性能。此外,我们表明可以容易地解释开发的潜在状态,这是朝着RNN中更好地解释的步骤。
translated by 谷歌翻译
在这项工作中,我们提出并评估了一种新的增强学习方法,紧凑体验重放(编者),它使用基于相似转换集的复发的预测目标值的时间差异学习,以及基于两个转换的经验重放的新方法记忆。我们的目标是减少在长期累计累计奖励的经纪人培训所需的经验。它与强化学习的相关性与少量观察结果有关,即它需要实现类似于文献中的相关方法获得的结果,这通常需要数百万视频框架来培训ATARI 2600游戏。我们举报了在八个挑战街机学习环境(ALE)挑战游戏中,为仅10万帧的培训试验和大约25,000次迭代的培训试验中报告了培训试验。我们还在与基线的同一游戏中具有相同的实验协议的DQN代理呈现结果。为了验证从较少数量的观察结果近似于良好的政策,我们还将其结果与从啤酒的基准上呈现的数百万帧中获得的结果进行比较。
translated by 谷歌翻译
强化学习中的信用作业是衡量行动对未来奖励的影响的问题。特别是,这需要从运气中分离技能,即解除外部因素和随后的行动对奖励行动的影响。为实现这一目标,我们将来自因果关系的反事件的概念调整为无模型RL设置。关键思想是通过学习从轨迹中提取相关信息来应对未来事件的价值函数。我们制定了一系列政策梯度算法,这些算法使用这些未来条件的价值函数作为基准或批评,并表明它们是可怕的差异。为避免对未来信息的调理潜在偏见,我们将后视信息限制为不包含有关代理程序行为的信息。我们展示了我们对许多说明性和具有挑战性问题的算法的功效和有效性。
translated by 谷歌翻译
钢筋学习的最新进展证明了其在超级人类水平上解决硬质孕代环境互动任务的能力。然而,由于大多数RL最先进的算法的样本低效率,即,需要大量培训集,因此在实际和现实世界任务中的应用目前有限。例如,在Dota 2中击败人类参与者的Openai五种算法已经训练了数千年的游戏时间。存在解决样本低效问题的几种方法,可以通过更好地探索环境来提供更有效的使用或旨在获得更相关和多样化的经验。然而,为了我们的知识,没有用于基于模型的算法的这种方法,其在求解具有高维状态空间的硬控制任务方面的高采样效率。这项工作连接了探索技术和基于模型的加强学习。我们设计了一种新颖的探索方法,考虑了基于模型的方法的特征。我们还通过实验证明我们的方法显着提高了基于模型的算法梦想家的性能。
translated by 谷歌翻译
Real-world reinforcement learning tasks often involve some form of partial observability where the observations only give a partial or noisy view of the true state of the world. Such tasks typically require some form of memory, where the agent has access to multiple past observations, in order to perform well. One popular way to incorporate memory is by using a recurrent neural network to access the agent's history. However, recurrent neural networks in reinforcement learning are often fragile and difficult to train, susceptible to catastrophic forgetting and sometimes fail completely as a result. In this work, we propose Deep Transformer Q-Networks (DTQN), a novel architecture utilizing transformers and self-attention to encode an agent's history. DTQN is designed modularly, and we compare results against several modifications to our base model. Our experiments demonstrate the transformer can solve partially observable tasks faster and more stably than previous recurrent approaches.
translated by 谷歌翻译
Transformer, originally devised for natural language processing, has also attested significant success in computer vision. Thanks to its super expressive power, researchers are investigating ways to deploy transformers to reinforcement learning (RL) and the transformer-based models have manifested their potential in representative RL benchmarks. In this paper, we collect and dissect recent advances on transforming RL by transformer (transformer-based RL or TRL), in order to explore its development trajectory and future trend. We group existing developments in two categories: architecture enhancement and trajectory optimization, and examine the main applications of TRL in robotic manipulation, text-based games, navigation and autonomous driving. For architecture enhancement, these methods consider how to apply the powerful transformer structure to RL problems under the traditional RL framework, which model agents and environments much more precisely than deep RL methods, but they are still limited by the inherent defects of traditional RL algorithms, such as bootstrapping and "deadly triad". For trajectory optimization, these methods treat RL problems as sequence modeling and train a joint state-action model over entire trajectories under the behavior cloning framework, which are able to extract policies from static datasets and fully use the long-sequence modeling capability of the transformer. Given these advancements, extensions and challenges in TRL are reviewed and proposals about future direction are discussed. We hope that this survey can provide a detailed introduction to TRL and motivate future research in this rapidly developing field.
translated by 谷歌翻译
基于变压器的模型在多个领域和任务上显示了它们的有效性。自我注意力允许将所有序列元素的信息结合到上下文感知表示形式中。但是,全球和本地信息必须主要存储在相同的元素表示中。此外,输入序列的长度受到自我注意的二次计算复杂性的限制。在这项工作中,我们提出并研究了一个记忆启动的片段级循环变压器(复发记忆变压器)。内存允许借助复发的帮助存储和处理本地和全局信息,并可以在长序列的段之间传递信息。我们通过将特殊的内存令牌添加到输入或输出序列中,实现了一个内存机制,无需更改变压器模型。然后,对变压器进行了训练,以控制内存操作和序列表示处理。实验的结果表明,我们的模型与Transformer-XL在语言建模上的较小内存大小上的表现相同,并在需要更长序列处理的任务方面胜过它。我们证明,将内存令牌添加到TR-XL可以提高IT性能。这使得反复的内存变压器成为需要学习长期依赖性和内存处理中的通用性(例如算法任务和推理)的应用程序的有前途的体系结构。
translated by 谷歌翻译
Deep reinforcement learning is poised to revolutionise the field of AI and represents a step towards building autonomous systems with a higher level understanding of the visual world. Currently, deep learning is enabling reinforcement learning to scale to problems that were previously intractable, such as learning to play video games directly from pixels. Deep reinforcement learning algorithms are also applied to robotics, allowing control policies for robots to be learned directly from camera inputs in the real world. In this survey, we begin with an introduction to the general field of reinforcement learning, then progress to the main streams of value-based and policybased methods. Our survey will cover central algorithms in deep reinforcement learning, including the deep Q-network, trust region policy optimisation, and asynchronous advantage actor-critic. In parallel, we highlight the unique advantages of deep neural networks, focusing on visual understanding via reinforcement learning. To conclude, we describe several current areas of research within the field.
translated by 谷歌翻译
正如人类和动物在自然世界中学习的那样,它们会遇到远非统一的实体,情况和事件的分布。通常,经常遇到相对较小的经历,而许多重要的体验很少发生。现实的高度紧密,重尾的本质构成了人类和动物通过不断发展的专业记忆系统所面临的特殊学习挑战。相比之下,大多数流行的RL环境和基准涉及属性,对象,情况或任务的大致变化。 RL算法将如何在环境特征分布的世界(如我们的)中表现出较不统一的分布?为了探讨这个问题,我们开发了三个互补的RL环境,在这些环境中,代理商的经验根据Zipfian(离散幂定律)分布而变化。在这些基准上,我们发现标准的深入RL体系结构和算法获得了对常见情况和任务的有用知识,但无法充分了解稀有的情况。为了更好地了解这一失败,我们探讨了如何调整当前方法的不同方面,以帮助提高罕见事件的性能,并表明RL目标功能,代理商的记忆系统和自我监督的学习目标都可以影响代理商的能力从罕见的体验中学习。这些结果共同表明,从偏斜的经验中进行强大的学习是应用模拟或实验室以外的深度RL方法的关键挑战,而我们的Zipfian环境为衡量未来的进步朝着这一目标提供了基础。
translated by 谷歌翻译
强化学习算法在解决稀疏和延迟奖励的复杂分层任务时需要许多样本。对于此类复杂的任务,最近提出的方向舵使用奖励再分配来利用与完成子任务相关的Q功能中的步骤。但是,由于当前的探索策略无法在合理的时间内发现它们,因此通常只有很少有具有高回报的情节作为示范。在这项工作中,我们介绍了Align-rudder,该王牌利用了一个配置文件模型来进行奖励重新分布,该模型是从多个示范序列比对获得的。因此,Align-Rudder有效地采用了奖励再分配,从而大大改善了很少的演示学习。 Align-rudder在复杂的人工任务上的竞争者优于竞争对手,延迟的奖励和几乎没有示威的竞争者。在Minecraft获得Diamond的任务上,Align Rudder能够挖掘钻石,尽管不经常。代码可在https://github.com/ml-jku/align-rudder上找到。 YouTube:https://youtu.be/ho-_8zul-uy
translated by 谷歌翻译
深度强化学习(RL)导致了许多最近和开创性的进步。但是,这些进步通常以培训的基础体系结构的规模增加以及用于训练它们的RL算法的复杂性提高,而均以增加规模的成本。这些增长反过来又使研究人员更难迅速原型新想法或复制已发表的RL算法。为了解决这些问题,这项工作描述了ACME,这是一个用于构建新型RL算法的框架,这些框架是专门设计的,用于启用使用简单的模块化组件构建的代理,这些组件可以在各种执行范围内使用。尽管ACME的主要目标是为算法开发提供一个框架,但第二个目标是提供重要或最先进算法的简单参考实现。这些实现既是对我们的设计决策的验证,也是对RL研究中可重复性的重要贡献。在这项工作中,我们描述了ACME内部做出的主要设计决策,并提供了有关如何使用其组件来实施各种算法的进一步详细信息。我们的实验为许多常见和最先进的算法提供了基准,并显示了如何为更大且更复杂的环境扩展这些算法。这突出了ACME的主要优点之一,即它可用于实现大型,分布式的RL算法,这些算法可以以较大的尺度运行,同时仍保持该实现的固有可读性。这项工作提出了第二篇文章的版本,恰好与模块化的增加相吻合,对离线,模仿和从演示算法学习以及作为ACME的一部分实现的各种新代理。
translated by 谷歌翻译
短期可塑性(STP)是一种将腐烂记忆存储在大脑皮质突触中的机制。在计算实践中,已经使用了STP,但主要是在尖峰神经元的细分市场中,尽管理论预测它是对某些动态任务的最佳解决方案。在这里,我们提出了一种新型的经常性神经单元,即STP神经元(STPN),它确实实现了惊人的功能。它的关键机制是,突触具有一个状态,通过与偶然性的自我连接在时间上传播。该公式使能够通过时间返回传播来训练可塑性,从而导致一种学习在短期内学习和忘记的形式。 STPN的表现优于所有测试的替代方案,即RNN,LSTMS,其他具有快速重量和可区分可塑性的型号。我们在监督和强化学习(RL)以及协会​​检索,迷宫探索,Atari视频游戏和Mujoco Robotics等任务中证实了这一点。此外,我们计算出,在神经形态或生物电路中,STPN最大程度地减少了模型的能量消耗,因为它会动态降低个体突触。基于这些,生物学STP可能是一种强大的进化吸引子,可最大程度地提高效率和计算能力。现在,STPN将这些神经形态的优势带入了广泛的机器学习实践。代码可从https://github.com/neuromorphiccomputing/stpn获得
translated by 谷歌翻译
这本数字本书包含在物理模拟的背景下与深度学习相关的一切实际和全面的一切。尽可能多,所有主题都带有Jupyter笔记本的形式的动手代码示例,以便快速入门。除了标准的受监督学习的数据中,我们将看看物理丢失约束,更紧密耦合的学习算法,具有可微分的模拟,以及加强学习和不确定性建模。我们生活在令人兴奋的时期:这些方法具有从根本上改变计算机模拟可以实现的巨大潜力。
translated by 谷歌翻译
A long-standing challenge in artificial intelligence is lifelong learning. In lifelong learning, many tasks are presented in sequence and learners must efficiently transfer knowledge between tasks while avoiding catastrophic forgetting over long lifetimes. On these problems, policy reuse and other multi-policy reinforcement learning techniques can learn many tasks. However, they can generate many temporary or permanent policies, resulting in memory issues. Consequently, there is a need for lifetime-scalable methods that continually refine a policy library of a pre-defined size. This paper presents a first approach to lifetime-scalable policy reuse. To pre-select the number of policies, a notion of task capacity, the maximal number of tasks that a policy can accurately solve, is proposed. To evaluate lifetime policy reuse using this method, two state-of-the-art single-actor base-learners are compared: 1) a value-based reinforcement learner, Deep Q-Network (DQN) or Deep Recurrent Q-Network (DRQN); and 2) an actor-critic reinforcement learner, Proximal Policy Optimisation (PPO) with or without Long Short-Term Memory layer. By selecting the number of policies based on task capacity, D(R)QN achieves near-optimal performance with 6 policies in a 27-task MDP domain and 9 policies in an 18-task POMDP domain; with fewer policies, catastrophic forgetting and negative transfer are observed. Due to slow, monotonic improvement, PPO requires fewer policies, 1 policy for the 27-task domain and 4 policies for the 18-task domain, but it learns the tasks with lower accuracy than D(R)QN. These findings validate lifetime-scalable policy reuse and suggest using D(R)QN for larger and PPO for smaller library sizes.
translated by 谷歌翻译