可以提前以低虚假警报率预测不良事件的模型对于接受医学界的决策支持系统至关重要。这项具有挑战性的机器学习任务通常仍被视为简单的二进制分类,并提出了一些定制方法来利用样本之间的时间依赖性。我们提出了时间标签平滑(TLS),这是一种新颖的学习策略,可调节平滑强度,这是与感兴趣的事件接近的函数。这种正则化技术降低了在类边界上的模型置信度,在该阶级边界中,信号通常是嘈杂或不信息的,因此训练可以集中在远离该边界区域的临床信息丰富的数据点上。从理论的角度来看,我们还表明,我们的方法可以作为多屈曲预测的扩展,这是在其他早期预测工作中提出的学习启发式词。 TLS从经验上匹配或跑赢大盘,考虑了各种早期预测基准任务的竞争方法。特别是,我们的方法可显着提高与临床相关的指标的性能,例如以低弹药率以较低的事件召回。
translated by 谷歌翻译
最近应用于从密集护理单位收集的时间序列的机器学习方法的成功暴露了缺乏标准化的机器学习基准,用于开发和比较这些方法。虽然原始数据集(例如MIMIC-IV或EICU)可以在物理体上自由访问,但是选择任务和预处理的选择通常是针对每个出版物的ad-hoc,限制出版物的可比性。在这项工作中,我们的目标是通过提供覆盖大型ICU相关任务的基准来改善这种情况。使用HirID数据集,我们定义与临床医生合作开发的多个临床相关任务。此外,我们提供可重复的端到端管道,以构建数据和标签。最后,我们提供了对当前最先进的序列建模方法的深入分析,突出了这种类型数据的深度学习方法的一些限制。通过这款基准,我们希望为研究界提供合理比较的可能性。
translated by 谷歌翻译
由于大多数入院的患者生存,因此感兴趣的医疗事件(例如死亡率)通常以较低的速度发生。具有这种不平衡率(类密度差异)的训练模型可能会导致次优预测。传统上,这个问题是通过临时方法(例如重新采样或重新加权)来解决的,但在许多情况下的性能仍然有限。我们为此不平衡问题提出了一个培训模型的框架:1)我们首先将特征提取和分类过程分离,分别调整每个组件的训练批次,以减轻由类密度差异引起的偏差;2)我们既有密度感知的损失,又是错误分类的可学习成本矩阵。我们证明了模型在现实世界医学数据集(TOPCAT和MIMIC-III)中的改进性能,以显示与域中的基线相比,AUC-ROC,AUC-PRC,BRIER技能得分的改进。
translated by 谷歌翻译
我们提出了一种使用流生理时间序列的端到端模型,以准确预测低氧血症的近期风险,低氧血症是一种罕见但威胁生命的疾病,已知在手术期间造成严重的患者伤害。受到以下事实的启发:低氧血症事件是根据未来观察到的低spo2(即血氧饱和度)实例定义的,我们提出的模型使对未来的低spo2实例和低氧血症结果的混合推断,并由关节序列启用同时优化标签预测的判别解码器的自动编码器,以及对数据重建和预测进行了培训的两个辅助解码器,它们无缝地学习上下文的潜在表示,这些表示捕获了当前状态之间的过渡到未来状态。所有解码器都共享一个基于内存的编码器,有助于捕获患者测量的全局动态。对于一个主要的学术医学中心进行了72,081次手术的大型手术队列,我们​​的模型优于所有基础,包括最先进的低氧预测系统使用的模型。能够以临床上可接受的警报对近期低氧事件的警报进行分辨率的实时预测,尤其是更关键的持续性低氧血症,我们提出的模型在改善临床决策和减轻围手术期的减轻负担方面有希望。
translated by 谷歌翻译
电子健康记录(EHRS)在患者级别汇总了多种信息,并保留了整个时间内患者健康状况进化的轨迹代表。尽管此信息提供了背景,并且可以由医生利用以监控患者的健康并进行更准确的预后/诊断,但患者记录可以包含长期跨度的信息,这些信息与快速生成的医疗数据速率相结合,使临床决策变得更加复杂。患者轨迹建模可以通过以可扩展的方式探索现有信息来帮助,并可以通过促进预防医学实践来增强医疗保健质量。我们为建模患者轨迹提出了一种解决方案,该解决方案结合了不同类型的信息并考虑了临床数据的时间方面。该解决方案利用了两种不同的架构:一组支持灵活的输入功能集,以将患者的录取转换为密集的表示;以及在基于复发的架构中进行的第二次探索提取的入院表示,其中使用滑动窗口机制在子序列中处理患者轨迹。使用公开可用的模仿III临床数据库评估了开发的解决方案,以两种不同的临床结果,意外的患者再入院和疾病进展。获得的结果证明了第一个体系结构使用单个患者入院进行建模和诊断预测的潜力。虽然临床文本中的信息并未显示在其他现有作品中观察到的判别能力,但这可以通过微调临床模型来解释。最后,我们使用滑动窗口机制来表示基于序列的体系结构的潜力,以表示输入数据,从而获得与其他现有解决方案的可比性能。
translated by 谷歌翻译
高水平的缺失数据和强大的类别不平衡是普遍存在的挑战,这些挑战通常在真实世界序列数据中同时呈现。现有方法分别接近这些问题,经常对底层数据生成过程进行显着假设,以减少缺失信息的影响。在这项工作中,我们可以利用展示如何普遍的自我监督训练方法,即自动评论预测编码(APC),以克服同时缺失的数据和类不平衡而没有强烈的假设。具体地,在合成数据集上,我们表明,通过使用APC,标准基线基本上得到改善,在高缺失和严重的阶级不平衡中产生最大的收益。我们进一步应用于两个现实世界医疗时间系列数据集的APC,并表明APC在所有设置中提高了分类性能,最终实现了最先进的AUPRC结果在物理体基准上。
translated by 谷歌翻译
COVID-19大流行对全球医疗保健系统造成了沉重的负担,并造成了巨大的社会破坏和经济损失。已经提出了许多深度学习模型来执行临床预测任务,例如使用电子健康记录(EHR)数据在重症监护病房中为Covid-19患者的死亡率预测。尽管在某些临床应用中取得了最初的成功,但目前缺乏基准测试结果来获得公平的比较,因此我们可以选择最佳模型以供临床使用。此外,传统预测任务的制定与重症监护现实世界的临床实践之间存在差异。为了填补这些空白,我们提出了两项​​临床预测任务,特定于结局的预测和重症监护病房中的COVID-19患者的早期死亡率预测。这两个任务是根据幼稚的停车时间和死亡率预测任务的改编,以适应COVID-19患者的临床实践。我们提出了公平,详细的开源数据预处管道,并评估了两项任务的17个最先进的预测模型,包括5个机器学习模型,6种基本的深度学习模型和6种专门为EHR设计的深度学习预测模型数据。我们使用来自两个现实世界Covid-19 EHR数据集的数据提供基准测试结果。这两个数据集都可以公开可用,而无需任何查询,并且可以根据要求访问一个数据集。我们为两项任务提供公平,可重复的基准测试结果。我们在在线平台上部署所有实验结果和模型。我们还允许临床医生和研究人员将其数据上传到平台上,并使用训练有素的模型快速获得预测结果。我们希望我们的努力能够进一步促进Covid-19预测建模的深度学习和机器学习研究。
translated by 谷歌翻译
从电子健康记录(EHR)数据中进行有效学习来预测临床结果,这通常是具有挑战性的,因为在不规则的时间段记录的特征和随访的损失以及竞争性事件(例如死亡或疾病进展)。为此,我们提出了一种生成的事实模型,即Survlatent Ode,该模型采用了基于基于微分方程的复发性神经网络(ODE-RNN)作为编码器,以有效地对不规则采样的输入数据进行潜在状态的动力学有效地参数化。然后,我们的模型利用所得的潜在嵌入来灵活地估计多个竞争事件的生存时间,而无需指定事件特定危害功能的形状。我们展示了我们在Mimic-III上的竞争性能,这是一种从重症监护病房收集的自由纵向数据集,预测医院死亡率以及DANA-FARBER癌症研究所(DFCI)的数据,以预测静脉血栓症(静脉血栓症(DFCI)(DFCI)( VTE),是癌症患者的生命并发症,死亡作为竞争事件。幸存ODE优于分层VTE风险组的当前临床标准Khorana风险评分,同时提供临床上有意义且可解释的潜在表示。
translated by 谷歌翻译
Real-time individual endpoint prediction has always been a challenging task but of great clinic utility for both patients and healthcare providers. With 6,879 chronic kidney disease stage 4 (CKD4) patients as a use case, we explored the feasibility and performance of gated recurrent units with decay that models Weibull probability density function (GRU-D-Weibull) as a semi-parametric longitudinal model for real-time individual endpoint prediction. GRU-D-Weibull has a maximum C-index of 0.77 at 4.3 years of follow-up, compared to 0.68 achieved by competing models. The L1-loss of GRU-D-Weibull is ~66% of XGB(AFT), ~60% of MTLR, and ~30% of AFT model at CKD4 index date. The average absolute L1-loss of GRU-D-Weibull is around one year, with a minimum of 40% Parkes serious error after index date. GRU-D-Weibull is not calibrated and significantly underestimates true survival probability. Feature importance tests indicate blood pressure becomes increasingly important during follow-up, while eGFR and blood albumin are less important. Most continuous features have non-linear/parabola impact on predicted survival time, and the results are generally consistent with existing knowledge. GRU-D-Weibull as a semi-parametric temporal model shows advantages in built-in parameterization of missing, native support for asynchronously arrived measurement, capability of output both probability and point estimates at arbitrary time point for arbitrary prediction horizon, improved discrimination and point estimate accuracy after incorporating newly arrived data. Further research on its performance with more comprehensive input features, in-process or post-process calibration are warranted to benefit CKD4 or alike terminally-ill patients.
translated by 谷歌翻译
内核生存分析模型借助内核函数估计了个体生存分布,该分布衡量了任意两个数据点之间的相似性。可以使用深内核存活模型来学习这种内核函数。在本文中,我们提出了一种名为“生存内核”的新的深内核生存模型,该模型以模型解释和理论分析的方式将大型数据集扩展到大型数据集。具体而言,根据最近开发的训练集压缩方案,用于分类和回归,将培训数据分为簇,称为内核网,我们将其扩展到生存分析设置。在测试时间,每个数据点表示为这些簇的加权组合,每个数据点可以可视化。对于生存核的特殊情况,我们在预测的生存分布上建立了有限样本误差,该误差是最佳的,该误差是最佳的。尽管使用上述内核网络压缩策略可以实现测试时间的可伸缩性,但训练过程中的可伸缩性是通过基于XGBoost(例如Xgboost)的暖启动程序和加速神经建筑搜索的启发式方法来实现的。在三个不同大小的标准生存分析数据集(大约300万个数据点)上,我们表明生存核具有很高的竞争力,并且在一致性指数方面经过测试的最佳基线。我们的代码可在以下网址找到:https://github.com/georgehc/survival-kernets
translated by 谷歌翻译
在本文中,我们提出了一种使用神经网络的生存分析模型,以及可伸缩优化算法。直接应用最大似然估计(MLE)缩短数据的一个关键技术挑战是评估目标函数及其梯度相对于模型参数需要计算积分。为了解决这一挑战,我们认识到,可以将用于审查数据的MEE视为差分方程约束优化问题,这是一种新颖的视角。在此连接之后,我们通过普通微分方程模拟事件时间的分布,并利用有效的颂歌求解器并伴随敏感性分析来数值评估可能性和梯度。使用这种方法,我们能够1)提供广泛的连续时间存活分布,无需强大的结构假设,2)使用神经网络获得强大的特征表示,3)允许在大规模应用中使用模型估计模型随机梯度下降。通过仿真研究和现实世界数据示例,我们展示了所提出的方法与现有的最先进的深度学习生存分析模型相比的有效性。已在HTTPS://github.com/Jiaqima/soden公开提供拟议的SODEN方法。
translated by 谷歌翻译
机器学习渗透到许多行业,这为公司带来了新的利益来源。然而,在人寿保险行业中,机器学习在实践中并未被广泛使用,因为在过去几年中,统计模型表明了它们的风险评估效率。因此,保险公司可能面临评估人工智能价值的困难。随着时间的流逝,专注于人寿保险行业的修改突出了将机器学习用于保险公司的利益以及通过释放数据价值带来的利益。本文回顾了传统的生存建模方法论,并通过机器学习技术扩展了它们。它指出了与常规机器学习模型的差异,并强调了特定实现在与机器学习模型家族中面对审查数据的重要性。在本文的补充中,已经开发了Python库。已经调整了不同的开源机器学习算法,以适应人寿保险数据的特殊性,即检查和截断。此类模型可以轻松地从该SCOR库中应用,以准确地模拟人寿保险风险。
translated by 谷歌翻译
Multivariate time series data in practical applications, such as health care, geoscience, and biology, are characterized by a variety of missing values. In time series prediction and other related tasks, it has been noted that missing values and their missing patterns are often correlated with the target labels, a.k.a., informative missingness. There is very limited work on exploiting the missing patterns for effective imputation and improving prediction performance. In this paper, we develop novel deep learning models, namely GRU-D, as one of the early attempts. GRU-D is based on Gated Recurrent Unit (GRU), a state-of-the-art recurrent neural network. It takes two representations of missing patterns, i.e., masking and time interval, and effectively incorporates them into a deep model architecture so that it not only captures the long-term temporal dependencies in time series, but also utilizes the missing patterns to achieve better prediction results. Experiments of time series classification tasks on real-world clinical datasets (MIMIC-III, PhysioNet) and synthetic datasets demonstrate that our models achieve state-of-the-art performance and provides useful insights for better understanding and utilization of missing values in time series analysis.
translated by 谷歌翻译
Predicting the health risks of patients using Electronic Health Records (EHR) has attracted considerable attention in recent years, especially with the development of deep learning techniques. Health risk refers to the probability of the occurrence of a specific health outcome for a specific patient. The predicted risks can be used to support decision-making by healthcare professionals. EHRs are structured patient journey data. Each patient journey contains a chronological set of clinical events, and within each clinical event, there is a set of clinical/medical activities. Due to variations of patient conditions and treatment needs, EHR patient journey data has an inherently high degree of missingness that contains important information affecting relationships among variables, including time. Existing deep learning-based models generate imputed values for missing values when learning the relationships. However, imputed data in EHR patient journey data may distort the clinical meaning of the original EHR patient journey data, resulting in classification bias. This paper proposes a novel end-to-end approach to modeling EHR patient journey data with Integrated Convolutional and Recurrent Neural Networks. Our model can capture both long- and short-term temporal patterns within each patient journey and effectively handle the high degree of missingness in EHR data without any imputation data generation. Extensive experimental results using the proposed model on two real-world datasets demonstrate robust performance as well as superior prediction accuracy compared to existing state-of-the-art imputation-based prediction methods.
translated by 谷歌翻译
台湾对全球碎片流的敏感性和死亡人数最高。台湾现有的碎屑流警告系统,该系统使用降雨量的时间加权度量,当该措施超过预定义的阈值时,会导致警报。但是,该系统会产生许多错误的警报,并错过了实际碎屑流的很大一部分。为了改善该系统,我们实施了五个机器学习模型,以输入历史降雨数据并预测是否会在选定的时间内发生碎屑流。我们发现,随机的森林模型在五个模型中表现最好,并优于台湾现有系统。此外,我们确定了与碎屑流的发生密切相关的降雨轨迹,并探索了缺失碎屑流的风险与频繁的虚假警报之间的权衡。这些结果表明,仅在小时降雨数据中训练的机器学习模型的潜力可以挽救生命,同时减少虚假警报。
translated by 谷歌翻译
深度神经网络(DNN)对于对培训期间的样品大大减少的课程进行更多错误是臭名昭着的。这种类别不平衡在临床应用中普遍存在,并且对处理非常重要,因为样品较少的类通常对应于临界病例(例如,癌症),其中错误分类可能具有严重后果。不要错过这种情况,通过设定更高的阈值,需要以高真正的阳性率(TPRS)运行二进制分类器,但这是类别不平衡问题的非常高的假阳性率(FPRS)的成本。在课堂失衡下的现有方法通常不会考虑到这一点。我们认为,通过在高TPRS处于阳性的错误分类时强调减少FPRS,应提高预测准确性,即赋予阳性,即批判性,类样本与更高的成本相关。为此,我们将DNN的训练训练为二进制分类作为约束优化问题,并引入一种新的约束,可以通过在高TPR处优先考虑FPR减少来强制ROC曲线(AUC)下强制实施最大面积的新约束。我们使用增强拉格朗日方法(ALM)解决了由此产生的受限优化问题。超越二进制文件,我们还提出了两个可能的延长了多级分类问题的建议约束。我们使用内部医学成像数据集,CIFAR10和CIFAR100呈现基于图像的二元和多级分类应用的实验结果。我们的结果表明,该方法通过在关键类别的准确性上获得了大多数病例的拟议方法,同时降低了非关键类别样本的错误分类率。
translated by 谷歌翻译
本文介绍了分类器校准原理和实践的简介和详细概述。校准的分类器正确地量化了与其实例明智的预测相关的不确定性或信心水平。这对于关键应用,最佳决策,成本敏感的分类以及某些类型的上下文变化至关重要。校准研究具有丰富的历史,其中几十年来预测机器学习作为学术领域的诞生。然而,校准兴趣的最近增加导致了新的方法和从二进制到多种子体设置的扩展。需要考虑的选项和问题的空间很大,并导航它需要正确的概念和工具集。我们提供了主要概念和方法的介绍性材料和最新的技术细节,包括适当的评分规则和其他评估指标,可视化方法,全面陈述二进制和多字数分类的HOC校准方法,以及几个先进的话题。
translated by 谷歌翻译
电子健康记录(EHR)系统以高频提供批判性,丰富和有价值的信息。EHR数据中最激动人心的应用之一正在开发具有来自生存分析的工具的实时死亡率警告系统。然而,最近使用的大多数生存分析方法基于使用静态协变量的(半)参数模型。这些模型不会利用时变EHR数据传达的信息。在这项工作中,我们展示了一种高度可扩展的生存分析方法,Boxhed 2.0基于模拟IV数据集的实时ICU死亡警告指示。重要的是,Boxhed可以以完全非参数的方式结合时间依赖的协变量,并通过理论来支持。我们的ICU死亡率模型实现了0.41和AUC-ROC的AUC-PRC为0.83的样品,展示了实时监测的好处。
translated by 谷歌翻译
预训练在机器学习的不同领域表现出成功,例如计算机视觉,自然语言处理(NLP)和医学成像。但是,尚未完全探索用于临床数据分析。记录了大量的临床记录,但是对于在小型医院收集的数据或处理罕见疾病的数据仍可能稀缺数据和标签。在这种情况下,对较大的未标记临床数据进行预训练可以提高性能。在本文中,我们提出了专为异质的多模式临床数据设计的新型无监督的预训练技术,用于通过蒙版语言建模(MLM)启发的患者预测,通过利用对人群图的深度学习来启发。为此,我们进一步提出了一个基于图形转换器的网络,该网络旨在处理异质临床数据。通过将基于掩盖的预训练与基于变压器的网络相结合,我们将基于掩盖的其他域中训练的成功转化为异质临床数据。我们使用三个医学数据集Tadpole,Mimic-III和一个败血症预测数据集,在自我监督和转移学习设置中展示了我们的预训练方法的好处。我们发现,我们提出的培训方法有助于对患者和人群水平的数据进行建模,并提高所有数据集中不同微调任务的性能。
translated by 谷歌翻译
传统机器学习方法面临两种主要挑战,在处理医疗保健预测分析任务方面。首先,医疗保健数据的高维性质需要劳动密集型和耗时的过程,为每项新任务选择适当的功能集。其次,这些方法依赖于特征工程来捕获患者数据的顺序性,这可能无法充分利用医疗事件的时间模式及其依赖性。最近的深度学习方法通​​过解决医疗数据的高维和时间挑战,对各种医疗保健预测任务显示了有希望的性能。这些方法可以学习关键因素(例如,医学概念或患者)的有用表示及其与高维原始或最低处理的医疗保健数据的相互作用。在本文中,我们系统地审查了专注于推进和使用深神经网络的研究,以利用患者结构化时间序列数据进行医疗保健预测任务。为了识别相关研究,搜索MEDLINE,IEEE,SCOPUS和ACM数字图书馆于2021年2月7日出版的研究。我们发现研究人员在十个研究流中为深度时间序列预测文献做出了贡献:深入学习模型,缺少价值处理,不规则处理,患者表示,静态数据包容,关注机制,解释,纳入医疗本体,学习策略和可扩展性。本研究总结了这些文献流的研究见解,确定了几个关键研究差距,并提出了未来的患者时间序列数据深入学习的研究机会。
translated by 谷歌翻译