Multivariate time series data in practical applications, such as health care, geoscience, and biology, are characterized by a variety of missing values. In time series prediction and other related tasks, it has been noted that missing values and their missing patterns are often correlated with the target labels, a.k.a., informative missingness. There is very limited work on exploiting the missing patterns for effective imputation and improving prediction performance. In this paper, we develop novel deep learning models, namely GRU-D, as one of the early attempts. GRU-D is based on Gated Recurrent Unit (GRU), a state-of-the-art recurrent neural network. It takes two representations of missing patterns, i.e., masking and time interval, and effectively incorporates them into a deep model architecture so that it not only captures the long-term temporal dependencies in time series, but also utilizes the missing patterns to achieve better prediction results. Experiments of time series classification tasks on real-world clinical datasets (MIMIC-III, PhysioNet) and synthetic datasets demonstrate that our models achieve state-of-the-art performance and provides useful insights for better understanding and utilization of missing values in time series analysis.
translated by 谷歌翻译
Predicting the health risks of patients using Electronic Health Records (EHR) has attracted considerable attention in recent years, especially with the development of deep learning techniques. Health risk refers to the probability of the occurrence of a specific health outcome for a specific patient. The predicted risks can be used to support decision-making by healthcare professionals. EHRs are structured patient journey data. Each patient journey contains a chronological set of clinical events, and within each clinical event, there is a set of clinical/medical activities. Due to variations of patient conditions and treatment needs, EHR patient journey data has an inherently high degree of missingness that contains important information affecting relationships among variables, including time. Existing deep learning-based models generate imputed values for missing values when learning the relationships. However, imputed data in EHR patient journey data may distort the clinical meaning of the original EHR patient journey data, resulting in classification bias. This paper proposes a novel end-to-end approach to modeling EHR patient journey data with Integrated Convolutional and Recurrent Neural Networks. Our model can capture both long- and short-term temporal patterns within each patient journey and effectively handle the high degree of missingness in EHR data without any imputation data generation. Extensive experimental results using the proposed model on two real-world datasets demonstrate robust performance as well as superior prediction accuracy compared to existing state-of-the-art imputation-based prediction methods.
translated by 谷歌翻译
传统机器学习方法面临两种主要挑战,在处理医疗保健预测分析任务方面。首先,医疗保健数据的高维性质需要劳动密集型和耗时的过程,为每项新任务选择适当的功能集。其次,这些方法依赖于特征工程来捕获患者数据的顺序性,这可能无法充分利用医疗事件的时间模式及其依赖性。最近的深度学习方法通​​过解决医疗数据的高维和时间挑战,对各种医疗保健预测任务显示了有希望的性能。这些方法可以学习关键因素(例如,医学概念或患者)的有用表示及其与高维原始或最低处理的医疗保健数据的相互作用。在本文中,我们系统地审查了专注于推进和使用深神经网络的研究,以利用患者结构化时间序列数据进行医疗保健预测任务。为了识别相关研究,搜索MEDLINE,IEEE,SCOPUS和ACM数字图书馆于2021年2月7日出版的研究。我们发现研究人员在十个研究流中为深度时间序列预测文献做出了贡献:深入学习模型,缺少价值处理,不规则处理,患者表示,静态数据包容,关注机制,解释,纳入医疗本体,学习策略和可扩展性。本研究总结了这些文献流的研究见解,确定了几个关键研究差距,并提出了未来的患者时间序列数据深入学习的研究机会。
translated by 谷歌翻译
现实世界中的电子健康记录(EHR)通常会受到高丢失数据率的困扰。例如,在我们的EHR中,对于某些功能,缺失率可能高达90%,所有功能的平均缺失率约为70%。我们提出了一种时间感知的双交叉访问的缺失价值插补方法,称为ta-dualCV,该方法自发利用跨特征和纵向依赖性的多元依赖性在EHRS中从有限的可观察记录中提取的信息。具体而言,ta-dualCV捕获了不同特征测量值的缺失模式的潜在结构,它还考虑了时间连续性,并根据时间步长和不规则的时间间隔捕获了潜在的时间缺失模式。使用三种类型的任务使用三个大型现实世界EHR评估TA-DUALCV:无监督的选级任务,通过更改掩盖率高达90%的掩码率和使用长期短期记忆(LSTM)进行监督的24小时早期预测对化粪池休克的早期预测(LSTM) 。我们的结果表明,TA-DUALCV在两种任务上的所有现有最先进的归纳基线(例如底特律和驯服)的表现明显好。
translated by 谷歌翻译
时间序列数据生成近年来越来越受到关注。已经提出了几种生成的对抗网络(GaN)的方法通常是假设目标时间序列数据良好格式化并完成的假设来解决问题。然而,现实世界时间序列(RTS)数据远离该乌托邦,例如,具有可变长度的长序列和信息缺失数据,用于设计强大的发电算法的棘手挑战。在本文中,我们向RTS数据提出了一种新的生成框架 - RTSGAN来解决上述挑战。 RTSGAN首先学习编码器 - 解码器模块,该模块提供时间序列实例和固定维度潜在载体之间的映射,然后学习生成模块以在同一潜在空间中生成vectors。通过组合发电机和解码器,RTSGAN能够生成尊重原始特征分布和时间动态的RTS。为了生成具有缺失值的时间序列,我们进一步用观察嵌入层和决定和生成解码器装备了RTSGAN,以更好地利用信息缺失模式。四个RTS数据集上的实验表明,该框架在用于下游分类和预测任务的合成数据实用程序方面优于前一代方法。
translated by 谷歌翻译
基于电子健康记录(EHR)的健康预测建筑模型已成为一个活跃的研究领域。 EHR患者旅程数据由患者定期的临床事件/患者访问组成。大多数现有研究的重点是建模访问之间的长期依赖性,而无需明确考虑连续访问之间的短期相关性,在这种情况下,将不规则的时间间隔(并入为辅助信息)被送入健康预测模型中以捕获患者期间的潜在渐进模式。 。我们提出了一个具有四个模块的新型深神经网络,以考虑各种变量对健康预测的贡献:i)堆叠的注意力模块在每个患者旅程中加强了临床事件中的深层语义,并产生访问嵌入,ii)短 - 术语时间关注模块模型在连续访问嵌入之间的短期相关性,同时捕获这些访问嵌入中时间间隔的影响,iii)长期时间关注模块模型的长期依赖模型,同时捕获时间间隔内的时间间隔的影响这些访问嵌入,iv),最后,耦合的注意模块适应了短期时间关注和长期时间注意模块的输出,以做出健康预测。对模拟III的实验结果表明,与现有的最新方法相比,我们的模型的预测准确性以及该方法的可解释性和鲁棒性。此外,我们发现建模短期相关性有助于局部先验的产生,从而改善了患者旅行的预测性建模。
translated by 谷歌翻译
时间序列数据在现实世界应用中无处不在。但是,最常见的问题之一是,时间序列数据可能会通过数据收集过程的固有性质丢失值。因此,必须从多元(相关)时间序列数据中推出缺失值,这对于改善预测性能的同时做出准确的数据驱动决策至关重要。插补的常规工作简单地删除缺失值或基于平均/零填充它们。尽管基于深层神经网络的最新作品显示出了显着的结果,但它们仍然有一个限制来捕获多元时间序列的复杂生成过程。在本文中,我们提出了一种用于多变量时间序列数据的新型插补方法,称为sting(使用GAN基于自我注意的时间序列插补网络)。我们利用生成的对抗网络和双向复发性神经网络来学习时间序列的潜在表示。此外,我们引入了一种新型的注意机制,以捕获整个序列的加权相关性,并避免无关序列带来的潜在偏见。三个现实世界数据集的实验结果表明,刺痛在插补精度以及具有估算值的下游任务方面优于现有的最新方法。
translated by 谷歌翻译
一般的ML应用程序中缺少数据方案非常常见,时间序列/序列应用也不例外。本文涉及基于新的复发神经网络(RNN)解决方案,用于丢失数据下的序列预测。我们的方法与所有现有方法不同。它试图直接编码数据中的丢失模式,而无需在模型构建之前或期间尝试将数据归为数据。我们的编码是无损的,并实现了压缩。它可以用于序列分类和预测。在存在可能的外源输入的情况下,我们将重点放在多步预测的一般背景下进行预测。特别是,我们为此提出了编码器码头(SEQ2SEQ)RNN的新型变体。这里的编码器采用上述模式编码,而在具有不同结构的解码器中,多个变体是可行的。我们通过对单个和多个序列(实际)数据集的多个实验来证明我们提出的体系结构的实用性。我们考虑两种情况,其中(i)数据自然缺少,并且(ii)数据被合成掩盖。
translated by 谷歌翻译
由于患者状况和治疗需求的变化,电子健康记录(EHR)表现出大量缺失数据。缺失价值的插补被认为是应对这一挑战的有效方法。现有的工作将插补方法和预测模型分为基于EHR的机器学习系统的两个独立部分。我们通过利用复合密度网络(CDNET)提出了一种集成的端对端方法,该方法允许插入方法和预测模型在单个框架中调整在一起。 CDNET由一个封闭式复发单元(GRU),混合物密度网络(MDN)和正则注意网络(RAN)组成。 GRU用作对EHR数据进行建模的潜在变量模型。 MDN旨在采样GRU生成的潜在变量。该运行是适用于较不可靠的估算值的正规器。 CDNET的结构使GRU和MDN迭代地利用彼此的输出来估算缺失值,从而导致更准确,更健壮的预测。我们验证cdnet关于模拟III数据集的死亡率预测任务。我们的模型以大幅度的利润率优于最先进的模型。我们还从经验上表明,正规化值是出色预测性能的关键因素。对预测不确定性的分析表明,我们的模型可以同时捕获核心和认知不确定性,从而使模型用户更好地了解模型结果。
translated by 谷歌翻译
COVID-19大流行对全球医疗保健系统造成了沉重的负担,并造成了巨大的社会破坏和经济损失。已经提出了许多深度学习模型来执行临床预测任务,例如使用电子健康记录(EHR)数据在重症监护病房中为Covid-19患者的死亡率预测。尽管在某些临床应用中取得了最初的成功,但目前缺乏基准测试结果来获得公平的比较,因此我们可以选择最佳模型以供临床使用。此外,传统预测任务的制定与重症监护现实世界的临床实践之间存在差异。为了填补这些空白,我们提出了两项​​临床预测任务,特定于结局的预测和重症监护病房中的COVID-19患者的早期死亡率预测。这两个任务是根据幼稚的停车时间和死亡率预测任务的改编,以适应COVID-19患者的临床实践。我们提出了公平,详细的开源数据预处管道,并评估了两项任务的17个最先进的预测模型,包括5个机器学习模型,6种基本的深度学习模型和6种专门为EHR设计的深度学习预测模型数据。我们使用来自两个现实世界Covid-19 EHR数据集的数据提供基准测试结果。这两个数据集都可以公开可用,而无需任何查询,并且可以根据要求访问一个数据集。我们为两项任务提供公平,可重复的基准测试结果。我们在在线平台上部署所有实验结果和模型。我们还允许临床医生和研究人员将其数据上传到平台上,并使用训练有素的模型快速获得预测结果。我们希望我们的努力能够进一步促进Covid-19预测建模的深度学习和机器学习研究。
translated by 谷歌翻译
预训练在机器学习的不同领域表现出成功,例如计算机视觉,自然语言处理(NLP)和医学成像。但是,尚未完全探索用于临床数据分析。记录了大量的临床记录,但是对于在小型医院收集的数据或处理罕见疾病的数据仍可能稀缺数据和标签。在这种情况下,对较大的未标记临床数据进行预训练可以提高性能。在本文中,我们提出了专为异质的多模式临床数据设计的新型无监督的预训练技术,用于通过蒙版语言建模(MLM)启发的患者预测,通过利用对人群图的深度学习来启发。为此,我们进一步提出了一个基于图形转换器的网络,该网络旨在处理异质临床数据。通过将基于掩盖的预训练与基于变压器的网络相结合,我们将基于掩盖的其他域中训练的成功转化为异质临床数据。我们使用三个医学数据集Tadpole,Mimic-III和一个败血症预测数据集,在自我监督和转移学习设置中展示了我们的预训练方法的好处。我们发现,我们提出的培训方法有助于对患者和人群水平的数据进行建模,并提高所有数据集中不同微调任务的性能。
translated by 谷歌翻译
高水平的缺失数据和强大的类别不平衡是普遍存在的挑战,这些挑战通常在真实世界序列数据中同时呈现。现有方法分别接近这些问题,经常对底层数据生成过程进行显着假设,以减少缺失信息的影响。在这项工作中,我们可以利用展示如何普遍的自我监督训练方法,即自动评论预测编码(APC),以克服同时缺失的数据和类不平衡而没有强烈的假设。具体地,在合成数据集上,我们表明,通过使用APC,标准基线基本上得到改善,在高缺失和严重的阶级不平衡中产生最大的收益。我们进一步应用于两个现实世界医疗时间系列数据集的APC,并表明APC在所有设置中提高了分类性能,最终实现了最先进的AUPRC结果在物理体基准上。
translated by 谷歌翻译
从电子健康记录(EHR)数据中进行有效学习来预测临床结果,这通常是具有挑战性的,因为在不规则的时间段记录的特征和随访的损失以及竞争性事件(例如死亡或疾病进展)。为此,我们提出了一种生成的事实模型,即Survlatent Ode,该模型采用了基于基于微分方程的复发性神经网络(ODE-RNN)作为编码器,以有效地对不规则采样的输入数据进行潜在状态的动力学有效地参数化。然后,我们的模型利用所得的潜在嵌入来灵活地估计多个竞争事件的生存时间,而无需指定事件特定危害功能的形状。我们展示了我们在Mimic-III上的竞争性能,这是一种从重症监护病房收集的自由纵向数据集,预测医院死亡率以及DANA-FARBER癌症研究所(DFCI)的数据,以预测静脉血栓症(静脉血栓症(DFCI)(DFCI)( VTE),是癌症患者的生命并发症,死亡作为竞争事件。幸存ODE优于分层VTE风险组的当前临床标准Khorana风险评分,同时提供临床上有意义且可解释的潜在表示。
translated by 谷歌翻译
最近应用于从密集护理单位收集的时间序列的机器学习方法的成功暴露了缺乏标准化的机器学习基准,用于开发和比较这些方法。虽然原始数据集(例如MIMIC-IV或EICU)可以在物理体上自由访问,但是选择任务和预处理的选择通常是针对每个出版物的ad-hoc,限制出版物的可比性。在这项工作中,我们的目标是通过提供覆盖大型ICU相关任务的基准来改善这种情况。使用HirID数据集,我们定义与临床医生合作开发的多个临床相关任务。此外,我们提供可重复的端到端管道,以构建数据和标签。最后,我们提供了对当前最先进的序列建模方法的深入分析,突出了这种类型数据的深度学习方法的一些限制。通过这款基准,我们希望为研究界提供合理比较的可能性。
translated by 谷歌翻译
异步时间序列是一个多元时间序列,在该时间序列中,所有通道都被观察到异步独立的,使得时间序列在对齐时极为稀疏。我们经常在具有复杂的观察过程(例如医疗保健,气候科学和天文学)的应用中观察到这种影响,仅举几例。由于异步性质,它们对深度学习体系结构构成了重大挑战,假定给他们的时间序列定期采样,完全观察并与时间对齐。本文提出了一个新颖的框架,我们称深卷积集功能(DCSF),该功能高度可扩展且有效,对于异步时间序列分类任务。随着深度学习体系结构的最新进展,我们引入了一个模型,该模型不变了,在此订单中呈现了时间序列的频道。我们探索卷积神经网络,该网络对定期采样和完全观察到的时间序列的紧密相关的问题分类进行了很好的研究,以编码设置元素。我们评估DCSF的ASTS分类和在线(每个时间点)ASTS分类。我们在多个现实世界和合成数据集上进行的广泛实验验证了建议的模型在准确性和运行时间方面的表现优于一系列最新模型。
translated by 谷歌翻译
鉴于ICU(重症监护股)监测心脏病患者,用于大脑活动,我们如何尽早预测其健康结果?早期决策在许多应用中至关重要,例如,监测患者可能有助于早期干预和改善护理。另一方面,EEG数据的早期预测造成了几个挑战:(i)早期准确性权衡;观察更多数据通常会提高精度,但牺牲了,(ii)大规模(用于训练)和流传输(在线决策)数据处理,(iii)多变化(由于多个电极)和多长度(由于变化患者的逗留时间)时间序列。通过这种现实世界的应用程序,我们提供了从早期预测中耗尽的受益者,以及从错误分类到统一的区域特定目标中的成本。统一这两种数量允许我们直接估计单个目标(即益处),重要的是,准确地指示输出预测的时间:当益处估计变为肯定时。 Eventitter(a)是高效且快速的,在输入序列的数量中具有训练时间线性,并且可以实时运行以进行决策,(b)可以处理多变化和可变长度的时间序列,适用于患者数据和(c)是有效的,与竞争对手相比,提供高达2倍的时间,具有相同或更好的准确性。
translated by 谷歌翻译
由于大多数入院的患者生存,因此感兴趣的医疗事件(例如死亡率)通常以较低的速度发生。具有这种不平衡率(类密度差异)的训练模型可能会导致次优预测。传统上,这个问题是通过临时方法(例如重新采样或重新加权)来解决的,但在许多情况下的性能仍然有限。我们为此不平衡问题提出了一个培训模型的框架:1)我们首先将特征提取和分类过程分离,分别调整每个组件的训练批次,以减轻由类密度差异引起的偏差;2)我们既有密度感知的损失,又是错误分类的可学习成本矩阵。我们证明了模型在现实世界医学数据集(TOPCAT和MIMIC-III)中的改进性能,以显示与域中的基线相比,AUC-ROC,AUC-PRC,BRIER技能得分的改进。
translated by 谷歌翻译
基于变压器模型架构的最近深入学习研究在各种域和任务中展示了最先进的性能,主要是在计算机视觉和自然语言处理域中。虽然最近的一些研究已经实施了使用电子健康记录数据的临床任务的变压器,但它们的范围,灵活性和全面性有限。在本研究中,我们提出了一种灵活的基于变换器的EHR嵌入管道和预测模型框架,它引入了利用了医疗域唯一的数据属性的现有工作流程的几个新颖修改。我们展示了灵活设计的可行性,在重症监护病房的案例研究中,我们的模型准确地预测了七种临床结果,这些临床结果与多个未来的时间范围有关的入院和患者死亡率。
translated by 谷歌翻译
像长期短期内存网络(LSTMS)和门控复发单元(GRUS)相同的经常性神经网络(RNN)是建模顺序数据的流行选择。它们的门控机构允许以来自传入观测的新信息在隐藏状态中编码的先前历史。在许多应用程序中,例如医疗记录,观察时间是不规则的并且携带重要信息。然而,LSTM和GRUS在观察之间假设恒定的时间间隔。为了解决这一挑战,我们提出了连续的经常性单位(CRU)-A神经结构,可以自然地处理观察之间的不规则时间间隔。 CRU的浇注机制采用卡尔曼滤波器的连续制剂,并且根据线性随机微分方程(SDE)和(2)潜伏状态在新观察进入时,在(1)之间的连续潜在传播之间的交替。在实证研究,我们表明CRU可以比神经常规差分方程(神经颂歌)的模型更好地插值不规则时间序列。我们还表明,我们的模型可以从IM-AGES推断动力学,并且卡尔曼有效地单挑出候选人的候选人,从而从嘈杂的观察中获得有价值的状态更新。
translated by 谷歌翻译
我们利用深度顺序模型来解决预测患者医疗保健利用的问题,这可能有助于政府更好地为未来的医疗保健使用提供资源。具体地,我们研究\纺织{发散亚组}的问题,其中较小的人口小组中的结果分布大大偏离了一般人群的群体。如果亚组的尺寸非常小(例如,稀有疾病),则对不同亚组的专业模型建造专门模型的传统方法可能是有问题的。为了解决这一挑战,我们首先开发一种新的无关注顺序模型,SANSFORMERS,灌输了适合在电子医疗记录中建模临床码的归纳偏差。然后,我们通过在整个健康登记处预先培训每个模型(接近100万名患者)之前,设计了一个特定的自我监督目标,并展示其有效性,特别是稀缺数据设置,特别是在整个健康登记处(接近一百万名患者)进行微调下游任务不同的子组。我们使用两个数据来源与LSTM和变压器模型进行比较新的SANSFARER架构和辅助医疗利用预测的多任务学习目标。凭经验,无关注的Sansformer模型在实验中始终如一地执行,在大多数情况下以至少$ \ SIM 10 $ \%表现出在大多数情况下的基线。此外,在预测医院访问数量时,自我监督的预训练将在整个始终提高性能,例如通过超过$ \ sim 50 $ \%(和高度为800美元\%)。
translated by 谷歌翻译