Predicting the health risks of patients using Electronic Health Records (EHR) has attracted considerable attention in recent years, especially with the development of deep learning techniques. Health risk refers to the probability of the occurrence of a specific health outcome for a specific patient. The predicted risks can be used to support decision-making by healthcare professionals. EHRs are structured patient journey data. Each patient journey contains a chronological set of clinical events, and within each clinical event, there is a set of clinical/medical activities. Due to variations of patient conditions and treatment needs, EHR patient journey data has an inherently high degree of missingness that contains important information affecting relationships among variables, including time. Existing deep learning-based models generate imputed values for missing values when learning the relationships. However, imputed data in EHR patient journey data may distort the clinical meaning of the original EHR patient journey data, resulting in classification bias. This paper proposes a novel end-to-end approach to modeling EHR patient journey data with Integrated Convolutional and Recurrent Neural Networks. Our model can capture both long- and short-term temporal patterns within each patient journey and effectively handle the high degree of missingness in EHR data without any imputation data generation. Extensive experimental results using the proposed model on two real-world datasets demonstrate robust performance as well as superior prediction accuracy compared to existing state-of-the-art imputation-based prediction methods.
translated by 谷歌翻译
由于患者状况和治疗需求的变化,电子健康记录(EHR)表现出大量缺失数据。缺失价值的插补被认为是应对这一挑战的有效方法。现有的工作将插补方法和预测模型分为基于EHR的机器学习系统的两个独立部分。我们通过利用复合密度网络(CDNET)提出了一种集成的端对端方法,该方法允许插入方法和预测模型在单个框架中调整在一起。 CDNET由一个封闭式复发单元(GRU),混合物密度网络(MDN)和正则注意网络(RAN)组成。 GRU用作对EHR数据进行建模的潜在变量模型。 MDN旨在采样GRU生成的潜在变量。该运行是适用于较不可靠的估算值的正规器。 CDNET的结构使GRU和MDN迭代地利用彼此的输出来估算缺失值,从而导致更准确,更健壮的预测。我们验证cdnet关于模拟III数据集的死亡率预测任务。我们的模型以大幅度的利润率优于最先进的模型。我们还从经验上表明,正规化值是出色预测性能的关键因素。对预测不确定性的分析表明,我们的模型可以同时捕获核心和认知不确定性,从而使模型用户更好地了解模型结果。
translated by 谷歌翻译
基于电子健康记录(EHR)的健康预测建筑模型已成为一个活跃的研究领域。 EHR患者旅程数据由患者定期的临床事件/患者访问组成。大多数现有研究的重点是建模访问之间的长期依赖性,而无需明确考虑连续访问之间的短期相关性,在这种情况下,将不规则的时间间隔(并入为辅助信息)被送入健康预测模型中以捕获患者期间的潜在渐进模式。 。我们提出了一个具有四个模块的新型深神经网络,以考虑各种变量对健康预测的贡献:i)堆叠的注意力模块在每个患者旅程中加强了临床事件中的深层语义,并产生访问嵌入,ii)短 - 术语时间关注模块模型在连续访问嵌入之间的短期相关性,同时捕获这些访问嵌入中时间间隔的影响,iii)长期时间关注模块模型的长期依赖模型,同时捕获时间间隔内的时间间隔的影响这些访问嵌入,iv),最后,耦合的注意模块适应了短期时间关注和长期时间注意模块的输出,以做出健康预测。对模拟III的实验结果表明,与现有的最新方法相比,我们的模型的预测准确性以及该方法的可解释性和鲁棒性。此外,我们发现建模短期相关性有助于局部先验的产生,从而改善了患者旅行的预测性建模。
translated by 谷歌翻译
Multivariate time series data in practical applications, such as health care, geoscience, and biology, are characterized by a variety of missing values. In time series prediction and other related tasks, it has been noted that missing values and their missing patterns are often correlated with the target labels, a.k.a., informative missingness. There is very limited work on exploiting the missing patterns for effective imputation and improving prediction performance. In this paper, we develop novel deep learning models, namely GRU-D, as one of the early attempts. GRU-D is based on Gated Recurrent Unit (GRU), a state-of-the-art recurrent neural network. It takes two representations of missing patterns, i.e., masking and time interval, and effectively incorporates them into a deep model architecture so that it not only captures the long-term temporal dependencies in time series, but also utilizes the missing patterns to achieve better prediction results. Experiments of time series classification tasks on real-world clinical datasets (MIMIC-III, PhysioNet) and synthetic datasets demonstrate that our models achieve state-of-the-art performance and provides useful insights for better understanding and utilization of missing values in time series analysis.
translated by 谷歌翻译
传统机器学习方法面临两种主要挑战,在处理医疗保健预测分析任务方面。首先,医疗保健数据的高维性质需要劳动密集型和耗时的过程,为每项新任务选择适当的功能集。其次,这些方法依赖于特征工程来捕获患者数据的顺序性,这可能无法充分利用医疗事件的时间模式及其依赖性。最近的深度学习方法通​​过解决医疗数据的高维和时间挑战,对各种医疗保健预测任务显示了有希望的性能。这些方法可以学习关键因素(例如,医学概念或患者)的有用表示及其与高维原始或最低处理的医疗保健数据的相互作用。在本文中,我们系统地审查了专注于推进和使用深神经网络的研究,以利用患者结构化时间序列数据进行医疗保健预测任务。为了识别相关研究,搜索MEDLINE,IEEE,SCOPUS和ACM数字图书馆于2021年2月7日出版的研究。我们发现研究人员在十个研究流中为深度时间序列预测文献做出了贡献:深入学习模型,缺少价值处理,不规则处理,患者表示,静态数据包容,关注机制,解释,纳入医疗本体,学习策略和可扩展性。本研究总结了这些文献流的研究见解,确定了几个关键研究差距,并提出了未来的患者时间序列数据深入学习的研究机会。
translated by 谷歌翻译
基于变压器模型架构的最近深入学习研究在各种域和任务中展示了最先进的性能,主要是在计算机视觉和自然语言处理域中。虽然最近的一些研究已经实施了使用电子健康记录数据的临床任务的变压器,但它们的范围,灵活性和全面性有限。在本研究中,我们提出了一种灵活的基于变换器的EHR嵌入管道和预测模型框架,它引入了利用了医疗域唯一的数据属性的现有工作流程的几个新颖修改。我们展示了灵活设计的可行性,在重症监护病房的案例研究中,我们的模型准确地预测了七种临床结果,这些临床结果与多个未来的时间范围有关的入院和患者死亡率。
translated by 谷歌翻译
现实世界中的电子健康记录(EHR)通常会受到高丢失数据率的困扰。例如,在我们的EHR中,对于某些功能,缺失率可能高达90%,所有功能的平均缺失率约为70%。我们提出了一种时间感知的双交叉访问的缺失价值插补方法,称为ta-dualCV,该方法自发利用跨特征和纵向依赖性的多元依赖性在EHRS中从有限的可观察记录中提取的信息。具体而言,ta-dualCV捕获了不同特征测量值的缺失模式的潜在结构,它还考虑了时间连续性,并根据时间步长和不规则的时间间隔捕获了潜在的时间缺失模式。使用三种类型的任务使用三个大型现实世界EHR评估TA-DUALCV:无监督的选级任务,通过更改掩盖率高达90%的掩码率和使用长期短期记忆(LSTM)进行监督的24小时早期预测对化粪池休克的早期预测(LSTM) 。我们的结果表明,TA-DUALCV在两种任务上的所有现有最先进的归纳基线(例如底特律和驯服)的表现明显好。
translated by 谷歌翻译
COVID-19大流行对全球医疗保健系统造成了沉重的负担,并造成了巨大的社会破坏和经济损失。已经提出了许多深度学习模型来执行临床预测任务,例如使用电子健康记录(EHR)数据在重症监护病房中为Covid-19患者的死亡率预测。尽管在某些临床应用中取得了最初的成功,但目前缺乏基准测试结果来获得公平的比较,因此我们可以选择最佳模型以供临床使用。此外,传统预测任务的制定与重症监护现实世界的临床实践之间存在差异。为了填补这些空白,我们提出了两项​​临床预测任务,特定于结局的预测和重症监护病房中的COVID-19患者的早期死亡率预测。这两个任务是根据幼稚的停车时间和死亡率预测任务的改编,以适应COVID-19患者的临床实践。我们提出了公平,详细的开源数据预处管道,并评估了两项任务的17个最先进的预测模型,包括5个机器学习模型,6种基本的深度学习模型和6种专门为EHR设计的深度学习预测模型数据。我们使用来自两个现实世界Covid-19 EHR数据集的数据提供基准测试结果。这两个数据集都可以公开可用,而无需任何查询,并且可以根据要求访问一个数据集。我们为两项任务提供公平,可重复的基准测试结果。我们在在线平台上部署所有实验结果和模型。我们还允许临床医生和研究人员将其数据上传到平台上,并使用训练有素的模型快速获得预测结果。我们希望我们的努力能够进一步促进Covid-19预测建模的深度学习和机器学习研究。
translated by 谷歌翻译
从电子健康记录(EHR)数据中进行有效学习来预测临床结果,这通常是具有挑战性的,因为在不规则的时间段记录的特征和随访的损失以及竞争性事件(例如死亡或疾病进展)。为此,我们提出了一种生成的事实模型,即Survlatent Ode,该模型采用了基于基于微分方程的复发性神经网络(ODE-RNN)作为编码器,以有效地对不规则采样的输入数据进行潜在状态的动力学有效地参数化。然后,我们的模型利用所得的潜在嵌入来灵活地估计多个竞争事件的生存时间,而无需指定事件特定危害功能的形状。我们展示了我们在Mimic-III上的竞争性能,这是一种从重症监护病房收集的自由纵向数据集,预测医院死亡率以及DANA-FARBER癌症研究所(DFCI)的数据,以预测静脉血栓症(静脉血栓症(DFCI)(DFCI)( VTE),是癌症患者的生命并发症,死亡作为竞争事件。幸存ODE优于分层VTE风险组的当前临床标准Khorana风险评分,同时提供临床上有意义且可解释的潜在表示。
translated by 谷歌翻译
时间序列数据在现实世界应用中无处不在。但是,最常见的问题之一是,时间序列数据可能会通过数据收集过程的固有性质丢失值。因此,必须从多元(相关)时间序列数据中推出缺失值,这对于改善预测性能的同时做出准确的数据驱动决策至关重要。插补的常规工作简单地删除缺失值或基于平均/零填充它们。尽管基于深层神经网络的最新作品显示出了显着的结果,但它们仍然有一个限制来捕获多元时间序列的复杂生成过程。在本文中,我们提出了一种用于多变量时间序列数据的新型插补方法,称为sting(使用GAN基于自我注意的时间序列插补网络)。我们利用生成的对抗网络和双向复发性神经网络来学习时间序列的潜在表示。此外,我们引入了一种新型的注意机制,以捕获整个序列的加权相关性,并避免无关序列带来的潜在偏见。三个现实世界数据集的实验结果表明,刺痛在插补精度以及具有估算值的下游任务方面优于现有的最新方法。
translated by 谷歌翻译
异步时间序列是一个多元时间序列,在该时间序列中,所有通道都被观察到异步独立的,使得时间序列在对齐时极为稀疏。我们经常在具有复杂的观察过程(例如医疗保健,气候科学和天文学)的应用中观察到这种影响,仅举几例。由于异步性质,它们对深度学习体系结构构成了重大挑战,假定给他们的时间序列定期采样,完全观察并与时间对齐。本文提出了一个新颖的框架,我们称深卷积集功能(DCSF),该功能高度可扩展且有效,对于异步时间序列分类任务。随着深度学习体系结构的最新进展,我们引入了一个模型,该模型不变了,在此订单中呈现了时间序列的频道。我们探索卷积神经网络,该网络对定期采样和完全观察到的时间序列的紧密相关的问题分类进行了很好的研究,以编码设置元素。我们评估DCSF的ASTS分类和在线(每个时间点)ASTS分类。我们在多个现实世界和合成数据集上进行的广泛实验验证了建议的模型在准确性和运行时间方面的表现优于一系列最新模型。
translated by 谷歌翻译
最近应用于从密集护理单位收集的时间序列的机器学习方法的成功暴露了缺乏标准化的机器学习基准,用于开发和比较这些方法。虽然原始数据集(例如MIMIC-IV或EICU)可以在物理体上自由访问,但是选择任务和预处理的选择通常是针对每个出版物的ad-hoc,限制出版物的可比性。在这项工作中,我们的目标是通过提供覆盖大型ICU相关任务的基准来改善这种情况。使用HirID数据集,我们定义与临床医生合作开发的多个临床相关任务。此外,我们提供可重复的端到端管道,以构建数据和标签。最后,我们提供了对当前最先进的序列建模方法的深入分析,突出了这种类型数据的深度学习方法的一些限制。通过这款基准,我们希望为研究界提供合理比较的可能性。
translated by 谷歌翻译
疾病的早​​期诊断可能会改善健康结果,例如较高的存活率和较低的治疗成本。随着电子健康记录中的大量信息(EHR),使用机器学习(ML)方法有很大的潜力来对疾病进展进行建模,以旨在早期预测疾病发作和其他结果。在这项工作中,我们采用了神经odes的最新创新来利用EHR的全部时间信息。我们提出了冰节(将临床嵌入与神经普通微分方程的整合),该体系结构在时间上整合临床代码和神经ODE的嵌入,以学习和预测EHR中的患者轨迹。我们将我们的方法应用于公共可用的模拟III和模拟IV数据集,与最新方法相比,报告了预测结果的改进,特别是针对EHR中经常观察到的临床代码。我们还表明,冰节在预测某些医疗状况(例如急性肾衰竭和肺心脏病)方面更有能力,并且还能够随着时间的推移产生患者的风险轨迹,以进行进一步的预测。
translated by 谷歌翻译
时间序列数据生成近年来越来越受到关注。已经提出了几种生成的对抗网络(GaN)的方法通常是假设目标时间序列数据良好格式化并完成的假设来解决问题。然而,现实世界时间序列(RTS)数据远离该乌托邦,例如,具有可变长度的长序列和信息缺失数据,用于设计强大的发电算法的棘手挑战。在本文中,我们向RTS数据提出了一种新的生成框架 - RTSGAN来解决上述挑战。 RTSGAN首先学习编码器 - 解码器模块,该模块提供时间序列实例和固定维度潜在载体之间的映射,然后学习生成模块以在同一潜在空间中生成vectors。通过组合发电机和解码器,RTSGAN能够生成尊重原始特征分布和时间动态的RTS。为了生成具有缺失值的时间序列,我们进一步用观察嵌入层和决定和生成解码器装备了RTSGAN,以更好地利用信息缺失模式。四个RTS数据集上的实验表明,该框架在用于下游分类和预测任务的合成数据实用程序方面优于前一代方法。
translated by 谷歌翻译
预训练在机器学习的不同领域表现出成功,例如计算机视觉,自然语言处理(NLP)和医学成像。但是,尚未完全探索用于临床数据分析。记录了大量的临床记录,但是对于在小型医院收集的数据或处理罕见疾病的数据仍可能稀缺数据和标签。在这种情况下,对较大的未标记临床数据进行预训练可以提高性能。在本文中,我们提出了专为异质的多模式临床数据设计的新型无监督的预训练技术,用于通过蒙版语言建模(MLM)启发的患者预测,通过利用对人群图的深度学习来启发。为此,我们进一步提出了一个基于图形转换器的网络,该网络旨在处理异质临床数据。通过将基于掩盖的预训练与基于变压器的网络相结合,我们将基于掩盖的其他域中训练的成功转化为异质临床数据。我们使用三个医学数据集Tadpole,Mimic-III和一个败血症预测数据集,在自我监督和转移学习设置中展示了我们的预训练方法的好处。我们发现,我们提出的培训方法有助于对患者和人群水平的数据进行建模,并提高所有数据集中不同微调任务的性能。
translated by 谷歌翻译
Electronic Health Records (EHRs) are a valuable asset to facilitate clinical research and point of care applications; however, many challenges such as data privacy concerns impede its optimal utilization. Deep generative models, particularly, Generative Adversarial Networks (GANs) show great promise in generating synthetic EHR data by learning underlying data distributions while achieving excellent performance and addressing these challenges. This work aims to review the major developments in various applications of GANs for EHRs and provides an overview of the proposed methodologies. For this purpose, we combine perspectives from healthcare applications and machine learning techniques in terms of source datasets and the fidelity and privacy evaluation of the generated synthetic datasets. We also compile a list of the metrics and datasets used by the reviewed works, which can be utilized as benchmarks for future research in the field. We conclude by discussing challenges in GANs for EHRs development and proposing recommended practices. We hope that this work motivates novel research development directions in the intersection of healthcare and machine learning.
translated by 谷歌翻译
Time series anomaly detection has applications in a wide range of research fields and applications, including manufacturing and healthcare. The presence of anomalies can indicate novel or unexpected events, such as production faults, system defects, or heart fluttering, and is therefore of particular interest. The large size and complex patterns of time series have led researchers to develop specialised deep learning models for detecting anomalous patterns. This survey focuses on providing structured and comprehensive state-of-the-art time series anomaly detection models through the use of deep learning. It providing a taxonomy based on the factors that divide anomaly detection models into different categories. Aside from describing the basic anomaly detection technique for each category, the advantages and limitations are also discussed. Furthermore, this study includes examples of deep anomaly detection in time series across various application domains in recent years. It finally summarises open issues in research and challenges faced while adopting deep anomaly detection models.
translated by 谷歌翻译
Intensive Care Units usually carry patients with a serious risk of mortality. Recent research has shown the ability of Machine Learning to indicate the patients' mortality risk and point physicians toward individuals with a heightened need for care. Nevertheless, healthcare data is often subject to privacy regulations and can therefore not be easily shared in order to build Centralized Machine Learning models that use the combined data of multiple hospitals. Federated Learning is a Machine Learning framework designed for data privacy that can be used to circumvent this problem. In this study, we evaluate the ability of deep Federated Learning to predict the risk of Intensive Care Unit mortality at an early stage. We compare the predictive performance of Federated, Centralized, and Local Machine Learning in terms of AUPRC, F1-score, and AUROC. Our results show that Federated Learning performs equally well as the centralized approach and is substantially better than the local approach, thus providing a viable solution for early Intensive Care Unit mortality prediction. In addition, we show that the prediction performance is higher when the patient history window is closer to discharge or death. Finally, we show that using the F1-score as an early stopping metric can stabilize and increase the performance of our approach for the task at hand.
translated by 谷歌翻译
对传染病疾病的准确预测是有效控制该地区流行病的关键。大多数现有方法忽略了区域之间的潜在动态依赖性或区域之间的时间依赖性和相互依存关系的重要性。在本文中,我们提出了一个内部和内部嵌入式融合网络(SEFNET),以改善流行病预测性能。 SEFNET由两个平行模块组成,分别是嵌入模块的系列间嵌入模块。在嵌入模块的串间嵌入模块中,提出了一个多尺度的统一卷积组件,称为“区域感知卷积”,该组件与自我发挥作用,以捕获从多个区域获得的时间序列之间捕获动态依赖性。内部嵌入模块使用长期的短期内存来捕获每个时间序列中的时间关系。随后,我们学习了两个嵌入的影响度,并将它们与参数矩阵融合法融合在一起。为了进一步提高鲁棒性,Sefnet还与非线性神经网络并行整合了传统的自回归组件。在四个现实世界流行有关的数据集上进行的实验表明,SEFNET具有有效性,并且表现优于最先进的基线。
translated by 谷歌翻译
倦怠是影响近一半医疗工作者的重大公共卫生问题。本文介绍了基于电子健康记录(EHR)活动日志的医师倦怠的第一个端到端深度学习框架,即任何EHR系统中可用的医师工作活动的数字痕迹。与仅依靠调查进行倦怠测量的先前方法相反,我们的框架直接从大规模的临床医生活动日志中了解了医师行为的深刻表示,以预测倦怠。我们提出了基于活动日志(HIPAL)的层次结构预测,该预测具有预先训练的时间依赖时间的活动嵌入机制,适用于活动日志和分层预测模型,该模型反映了临床医生活动日志的自然等级结构,并捕获了医生的演化。短期和长期水平的倦怠风险。为了利用大量未标记的活动日志,我们提出了一个半监督的框架,该框架学会了将从未标记的临床医生活动中提取的知识转移到基于HIPAL的预测模型中。从EHR收集的1500万个临床医生活动日志的实验证明了我们提出的框架在医师倦怠和培训效率方面的预测框架比最先进的方法的优势。
translated by 谷歌翻译