由于大多数入院的患者生存,因此感兴趣的医疗事件(例如死亡率)通常以较低的速度发生。具有这种不平衡率(类密度差异)的训练模型可能会导致次优预测。传统上,这个问题是通过临时方法(例如重新采样或重新加权)来解决的,但在许多情况下的性能仍然有限。我们为此不平衡问题提出了一个培训模型的框架:1)我们首先将特征提取和分类过程分离,分别调整每个组件的训练批次,以减轻由类密度差异引起的偏差;2)我们既有密度感知的损失,又是错误分类的可学习成本矩阵。我们证明了模型在现实世界医学数据集(TOPCAT和MIMIC-III)中的改进性能,以显示与域中的基线相比,AUC-ROC,AUC-PRC,BRIER技能得分的改进。
translated by 谷歌翻译
传统机器学习方法面临两种主要挑战,在处理医疗保健预测分析任务方面。首先,医疗保健数据的高维性质需要劳动密集型和耗时的过程,为每项新任务选择适当的功能集。其次,这些方法依赖于特征工程来捕获患者数据的顺序性,这可能无法充分利用医疗事件的时间模式及其依赖性。最近的深度学习方法通​​过解决医疗数据的高维和时间挑战,对各种医疗保健预测任务显示了有希望的性能。这些方法可以学习关键因素(例如,医学概念或患者)的有用表示及其与高维原始或最低处理的医疗保健数据的相互作用。在本文中,我们系统地审查了专注于推进和使用深神经网络的研究,以利用患者结构化时间序列数据进行医疗保健预测任务。为了识别相关研究,搜索MEDLINE,IEEE,SCOPUS和ACM数字图书馆于2021年2月7日出版的研究。我们发现研究人员在十个研究流中为深度时间序列预测文献做出了贡献:深入学习模型,缺少价值处理,不规则处理,患者表示,静态数据包容,关注机制,解释,纳入医疗本体,学习策略和可扩展性。本研究总结了这些文献流的研究见解,确定了几个关键研究差距,并提出了未来的患者时间序列数据深入学习的研究机会。
translated by 谷歌翻译
疾病预测是医学应用中的知名分类问题。 GCNS提供了一个强大的工具,用于分析患者相对于彼此的特征。这可以通过将问题建模作为图形节点分类任务来实现,其中每个节点是患者。由于这种医学数据集的性质,类别不平衡是疾病预测领域的普遍存在问题,其中类的分布是歪曲的。当数据中存在类别不平衡时,现有的基于图形的分类器倾向于偏向于主要类别并忽略小类中的样本。另一方面,所有患者中罕见阳性病例的正确诊断在医疗保健系统中至关重要。在传统方法中,通过将适当的权重分配给丢失函数中的类别来解决这种不平衡,这仍然依赖于对异常值敏感的权重的相对值,并且在某些情况下偏向于小类(ES)。在本文中,我们提出了一种重加权的对抗性图形卷积网络(RA-GCN),以防止基于图形的分类器强调任何特定类的样本。这是通过将基于图形的神经网络与每个类相关联来完成的,这负责加权类样本并改变分类器的每个样本的重要性。因此,分类器自身调节并确定类之间的边界,更加关注重要样本。分类器和加权网络的参数受到侵犯方法训练。我们在合成和三个公共医疗数据集上显示实验。与最近的方法相比,ra-gcn展示了与最近的方法在所有三个数据集上识别患者状态的方法相比。详细分析作为合成数据集的定量和定性实验提供。
translated by 谷歌翻译
可以提前以低虚假警报率预测不良事件的模型对于接受医学界的决策支持系统至关重要。这项具有挑战性的机器学习任务通常仍被视为简单的二进制分类,并提出了一些定制方法来利用样本之间的时间依赖性。我们提出了时间标签平滑(TLS),这是一种新颖的学习策略,可调节平滑强度,这是与感兴趣的事件接近的函数。这种正则化技术降低了在类边界上的模型置信度,在该阶级边界中,信号通常是嘈杂或不信息的,因此训练可以集中在远离该边界区域的临床信息丰富的数据点上。从理论的角度来看,我们还表明,我们的方法可以作为多屈曲预测的扩展,这是在其他早期预测工作中提出的学习启发式词。 TLS从经验上匹配或跑赢大盘,考虑了各种早期预测基准任务的竞争方法。特别是,我们的方法可显着提高与临床相关的指标的性能,例如以低弹药率以较低的事件召回。
translated by 谷歌翻译
根据研究人员在歧视和校准性能方面采用的标准评估实践,这项工作旨在了解阶级不平衡对胸部X射线分类器的性能的影响。首先,我们进行了一项文献研究,分析了普通科学实践并确认:(1)即使在处理高度不平衡的数据集时,社区也倾向于使用由大多数阶级主导的指标; (2)包括包括胸部X射线分类器的校准研究仍然罕见,尽管其在医疗保健的背景下的重要性。其次,我们对两个主要胸部X射线数据集进行了系统实验,探讨了不同类别比率下的几种性能指标的行为,并显示了广泛采用的指标可以隐藏少数阶级中的性能。最后,我们提出了通过两个替代度量,精密召回曲线和平衡的Brier得分,这更好地反映了系统在这种情况下的性能。我们的研究结果表明,胸部X射线分类器研究界采用的当前评估实践可能无法反映真实临床情景中计算机辅助诊断系统的性能,并建议改善这种情况的替代方案。
translated by 谷歌翻译
Multivariate time series data in practical applications, such as health care, geoscience, and biology, are characterized by a variety of missing values. In time series prediction and other related tasks, it has been noted that missing values and their missing patterns are often correlated with the target labels, a.k.a., informative missingness. There is very limited work on exploiting the missing patterns for effective imputation and improving prediction performance. In this paper, we develop novel deep learning models, namely GRU-D, as one of the early attempts. GRU-D is based on Gated Recurrent Unit (GRU), a state-of-the-art recurrent neural network. It takes two representations of missing patterns, i.e., masking and time interval, and effectively incorporates them into a deep model architecture so that it not only captures the long-term temporal dependencies in time series, but also utilizes the missing patterns to achieve better prediction results. Experiments of time series classification tasks on real-world clinical datasets (MIMIC-III, PhysioNet) and synthetic datasets demonstrate that our models achieve state-of-the-art performance and provides useful insights for better understanding and utilization of missing values in time series analysis.
translated by 谷歌翻译
使用不平衡数据集的二进制分类具有挑战性。模型倾向于将所有样本视为属于多数类的样本。尽管现有的解决方案(例如抽样方法,成本敏感方法和合奏学习方法)提高了少数族裔类别的准确性,但这些方法受到过度拟合问题或难以决定的成本参数的限制。我们提出了HADR,这是一种降低尺寸的混合方法,包括数据块构建,降低性降低和与深度神经网络分类器的合奏学习。我们评估了八个不平衡的公共数据集的性能,从召回,g均值和AUC方面。结果表明,我们的模型优于最先进的方法。
translated by 谷歌翻译
电子健康记录(EHRS)在患者级别汇总了多种信息,并保留了整个时间内患者健康状况进化的轨迹代表。尽管此信息提供了背景,并且可以由医生利用以监控患者的健康并进行更准确的预后/诊断,但患者记录可以包含长期跨度的信息,这些信息与快速生成的医疗数据速率相结合,使临床决策变得更加复杂。患者轨迹建模可以通过以可扩展的方式探索现有信息来帮助,并可以通过促进预防医学实践来增强医疗保健质量。我们为建模患者轨迹提出了一种解决方案,该解决方案结合了不同类型的信息并考虑了临床数据的时间方面。该解决方案利用了两种不同的架构:一组支持灵活的输入功能集,以将患者的录取转换为密集的表示;以及在基于复发的架构中进行的第二次探索提取的入院表示,其中使用滑动窗口机制在子序列中处理患者轨迹。使用公开可用的模仿III临床数据库评估了开发的解决方案,以两种不同的临床结果,意外的患者再入院和疾病进展。获得的结果证明了第一个体系结构使用单个患者入院进行建模和诊断预测的潜力。虽然临床文本中的信息并未显示在其他现有作品中观察到的判别能力,但这可以通过微调临床模型来解释。最后,我们使用滑动窗口机制来表示基于序列的体系结构的潜力,以表示输入数据,从而获得与其他现有解决方案的可比性能。
translated by 谷歌翻译
In this study, we systematically investigate the impact of class imbalance on classification performance of convolutional neural networks (CNNs) and compare frequently used methods to address the issue. Class imbalance is a common problem that has been comprehensively studied in classical machine learning, yet very limited systematic research is available in the context of deep learning. In our study, we use three benchmark datasets of increasing complexity, MNIST, CIFAR-10 and ImageNet, to investigate the effects of imbalance on classification and perform an extensive comparison of several methods to address the issue: oversampling, undersampling, two-phase training, and thresholding that compensates for prior class probabilities. Our main evaluation metric is area under the receiver operating characteristic curve (ROC AUC) adjusted to multi-class tasks since overall accuracy metric is associated with notable difficulties in the context of imbalanced data. Based on results from our experiments we conclude that (i) the effect of class imbalance on classification performance is detrimental; (ii) the method of addressing class imbalance that emerged as dominant in almost all analyzed scenarios was oversampling; (iii) oversampling should be applied to the level that completely eliminates the imbalance, whereas the optimal undersampling ratio depends on the extent of imbalance; (iv) as opposed to some classical machine learning models, oversampling does not cause overfitting of CNNs; (v) thresholding should be applied to compensate for prior class probabilities when overall number of properly classified cases is of interest.
translated by 谷歌翻译
本文介绍了分类器校准原理和实践的简介和详细概述。校准的分类器正确地量化了与其实例明智的预测相关的不确定性或信心水平。这对于关键应用,最佳决策,成本敏感的分类以及某些类型的上下文变化至关重要。校准研究具有丰富的历史,其中几十年来预测机器学习作为学术领域的诞生。然而,校准兴趣的最近增加导致了新的方法和从二进制到多种子体设置的扩展。需要考虑的选项和问题的空间很大,并导航它需要正确的概念和工具集。我们提供了主要概念和方法的介绍性材料和最新的技术细节,包括适当的评分规则和其他评估指标,可视化方法,全面陈述二进制和多字数分类的HOC校准方法,以及几个先进的话题。
translated by 谷歌翻译
我们提出了一种使用流生理时间序列的端到端模型,以准确预测低氧血症的近期风险,低氧血症是一种罕见但威胁生命的疾病,已知在手术期间造成严重的患者伤害。受到以下事实的启发:低氧血症事件是根据未来观察到的低spo2(即血氧饱和度)实例定义的,我们提出的模型使对未来的低spo2实例和低氧血症结果的混合推断,并由关节序列启用同时优化标签预测的判别解码器的自动编码器,以及对数据重建和预测进行了培训的两个辅助解码器,它们无缝地学习上下文的潜在表示,这些表示捕获了当前状态之间的过渡到未来状态。所有解码器都共享一个基于内存的编码器,有助于捕获患者测量的全局动态。对于一个主要的学术医学中心进行了72,081次手术的大型手术队列,我们​​的模型优于所有基础,包括最先进的低氧预测系统使用的模型。能够以临床上可接受的警报对近期低氧事件的警报进行分辨率的实时预测,尤其是更关键的持续性低氧血症,我们提出的模型在改善临床决策和减轻围手术期的减轻负担方面有希望。
translated by 谷歌翻译
Learning classifiers using skewed or imbalanced datasets can occasionally lead to classification issues; this is a serious issue. In some cases, one class contains the majority of examples while the other, which is frequently the more important class, is nevertheless represented by a smaller proportion of examples. Using this kind of data could make many carefully designed machine-learning systems ineffective. High training fidelity was a term used to describe biases vs. all other instances of the class. The best approach to all possible remedies to this issue is typically to gain from the minority class. The article examines the most widely used methods for addressing the problem of learning with a class imbalance, including data-level, algorithm-level, hybrid, cost-sensitive learning, and deep learning, etc. including their advantages and limitations. The efficiency and performance of the classifier are assessed using a myriad of evaluation metrics.
translated by 谷歌翻译
最近应用于从密集护理单位收集的时间序列的机器学习方法的成功暴露了缺乏标准化的机器学习基准,用于开发和比较这些方法。虽然原始数据集(例如MIMIC-IV或EICU)可以在物理体上自由访问,但是选择任务和预处理的选择通常是针对每个出版物的ad-hoc,限制出版物的可比性。在这项工作中,我们的目标是通过提供覆盖大型ICU相关任务的基准来改善这种情况。使用HirID数据集,我们定义与临床医生合作开发的多个临床相关任务。此外,我们提供可重复的端到端管道,以构建数据和标签。最后,我们提供了对当前最先进的序列建模方法的深入分析,突出了这种类型数据的深度学习方法的一些限制。通过这款基准,我们希望为研究界提供合理比较的可能性。
translated by 谷歌翻译
超参数优化构成了典型的现代机器学习工作流程的很大一部分。这是由于这样一个事实,即机器学习方法和相应的预处理步骤通常只有在正确调整超参数时就会产生最佳性能。但是在许多应用中,我们不仅有兴趣仅仅为了预测精度而优化ML管道;确定最佳配置时,必须考虑其他指标或约束,从而导致多目标优化问题。由于缺乏知识和用于多目标超参数优化的知识和容易获得的软件实现,因此通常在实践中被忽略。在这项工作中,我们向读者介绍了多个客观超参数优化的基础知识,并激励其在应用ML中的实用性。此外,我们从进化算法和贝叶斯优化的领域提供了现有优化策略的广泛调查。我们说明了MOO在几个特定ML应用中的实用性,考虑了诸如操作条件,预测时间,稀疏,公平,可解释性和鲁棒性之类的目标。
translated by 谷歌翻译
COVID-19大流行对全球医疗保健系统造成了沉重的负担,并造成了巨大的社会破坏和经济损失。已经提出了许多深度学习模型来执行临床预测任务,例如使用电子健康记录(EHR)数据在重症监护病房中为Covid-19患者的死亡率预测。尽管在某些临床应用中取得了最初的成功,但目前缺乏基准测试结果来获得公平的比较,因此我们可以选择最佳模型以供临床使用。此外,传统预测任务的制定与重症监护现实世界的临床实践之间存在差异。为了填补这些空白,我们提出了两项​​临床预测任务,特定于结局的预测和重症监护病房中的COVID-19患者的早期死亡率预测。这两个任务是根据幼稚的停车时间和死亡率预测任务的改编,以适应COVID-19患者的临床实践。我们提出了公平,详细的开源数据预处管道,并评估了两项任务的17个最先进的预测模型,包括5个机器学习模型,6种基本的深度学习模型和6种专门为EHR设计的深度学习预测模型数据。我们使用来自两个现实世界Covid-19 EHR数据集的数据提供基准测试结果。这两个数据集都可以公开可用,而无需任何查询,并且可以根据要求访问一个数据集。我们为两项任务提供公平,可重复的基准测试结果。我们在在线平台上部署所有实验结果和模型。我们还允许临床医生和研究人员将其数据上传到平台上,并使用训练有素的模型快速获得预测结果。我们希望我们的努力能够进一步促进Covid-19预测建模的深度学习和机器学习研究。
translated by 谷歌翻译
在这项工作中,我们研究了基于分数的梯度学习在判别和生成分类设置中的应用。分数函数可用于将数据分布描述为密度的替代方案。它可以通过分数匹配有效地学习,并用于灵活地生成可靠的样本以增强判别性分类质量,以恢复密度并构建生成性分类器。我们分析了涉及基于分数表示的决策理论,并对模拟和现实世界数据集进行了实验,证明了其在实现和改善算法分类性能以及对扰动的鲁棒性方面的有效性,尤其是在高维和不平衡状况下。
translated by 谷歌翻译
当疑问以获得更好的有效精度时,选择性分类允许模型放弃预测(例如,说“我不知道”)。尽管典型的选择性模型平均可以有效地产生更准确的预测,但它们仍可能允许具有很高置信度的错误预测,或者跳过置信度较低的正确预测。提供校准的不确定性估计以及预测(与真实频率相对应的概率)以及具有平均准确的预测一样重要。但是,不确定性估计对于某些输入可能不可靠。在本文中,我们开发了一种新的选择性分类方法,其中我们提出了一种拒绝“不确定”不确定性的示例的方法。通过这样做,我们旨在通过对所接受示例的分布进行{良好校准}的不确定性估计进行预测,这是我们称为选择性校准的属性。我们提出了一个用于学习选择性校准模型的框架,其中训练了单独的选择器网络以改善给定基本模型的选择性校准误差。特别是,我们的工作重点是实现强大的校准,该校准有意地设计为在室外数据上进行测试。我们通过受分配强大的优化启发的训练策略实现了这一目标,在该策略中,我们将模拟输入扰动应用于已知的,内域培训数据。我们证明了方法对多个图像分类和肺癌风险评估任务的经验有效性。
translated by 谷歌翻译
临床数据管理系统和人工智能方法的快速进展使个性化药物的时代能够。重症监护单位(ICU)是这种发展的理想临床研究环境,因为它们收集了许多临床数据,并且是高度计算机化的环境。我们在使用临床自然语言的前瞻性ICU数据库中设计了一种回顾性临床研究,帮助早期诊断严重生病的儿童心力衰竭。该方法包括学习算法的实证实验,以了解法国临床票据数据的隐藏解释和呈现。本研究包括1386名患者的临床票据,符合5444行票据。有1941个阳性案件(总计36%)和3503个使用标准方法的独立医生分类的负案件。多层的感知者神经网络优于其他判别和生成的分类器。因此,所提出的框架产生了总体分类性能,精度为89%,召回88%和89%的精度。本研究成功地应用了学习代表和机器学习算法,以检测单一法国机构中的临床自然语言的心力衰竭。需要进一步的工作来在其他机构和其他语言中使用相同的方法。
translated by 谷歌翻译
深度神经网络(DNN)对于对培训期间的样品大大减少的课程进行更多错误是臭名昭着的。这种类别不平衡在临床应用中普遍存在,并且对处理非常重要,因为样品较少的类通常对应于临界病例(例如,癌症),其中错误分类可能具有严重后果。不要错过这种情况,通过设定更高的阈值,需要以高真正的阳性率(TPRS)运行二进制分类器,但这是类别不平衡问题的非常高的假阳性率(FPRS)的成本。在课堂失衡下的现有方法通常不会考虑到这一点。我们认为,通过在高TPRS处于阳性的错误分类时强调减少FPRS,应提高预测准确性,即赋予阳性,即批判性,类样本与更高的成本相关。为此,我们将DNN的训练训练为二进制分类作为约束优化问题,并引入一种新的约束,可以通过在高TPR处优先考虑FPR减少来强制ROC曲线(AUC)下强制实施最大面积的新约束。我们使用增强拉格朗日方法(ALM)解决了由此产生的受限优化问题。超越二进制文件,我们还提出了两个可能的延长了多级分类问题的建议约束。我们使用内部医学成像数据集,CIFAR10和CIFAR100呈现基于图像的二元和多级分类应用的实验结果。我们的结果表明,该方法通过在关键类别的准确性上获得了大多数病例的拟议方法,同时降低了非关键类别样本的错误分类率。
translated by 谷歌翻译
从课堂上学习不平衡数据集对许多机器学习算法带来了挑战。许多现实世界域通过定义,通过拥有多数阶级的多数阶级,自然具有比其少数级别更多的阶级(例如,真正的银行交易比欺诈性更频繁)。已经提出了许多方法来解决类别不平衡问题,其中最受欢迎的过采样技术(例如Smote)。这些方法在少数群体类中生成合成实例,以平衡数据集,执行提高预测机器学习(ML)模型的性能的数据增强。在本文中,我们推进了一种新的数据增强方法(改编自解释的AI),它在少数类中生成合成,反事实情况。与其他过采样技术不同,该方法使用实际特征值,而不是实例之间的内插值,自适应地将存在于数据集的实例。报告了使用四种不同分类器和25个数据集的几个实验,这表明该反事实增强方法(CFA)在少数类中生成有用的合成数据点。实验还表明,CFA与许多其他过采样方法具有竞争力,其中许多过采样方法是Smote的变种。讨论了CFAS性能的基础,以及在未来测试中可能更好或更糟的情况下的条件。
translated by 谷歌翻译