当疑问以获得更好的有效精度时,选择性分类允许模型放弃预测(例如,说“我不知道”)。尽管典型的选择性模型平均可以有效地产生更准确的预测,但它们仍可能允许具有很高置信度的错误预测,或者跳过置信度较低的正确预测。提供校准的不确定性估计以及预测(与真实频率相对应的概率)以及具有平均准确的预测一样重要。但是,不确定性估计对于某些输入可能不可靠。在本文中,我们开发了一种新的选择性分类方法,其中我们提出了一种拒绝“不确定”不确定性的示例的方法。通过这样做,我们旨在通过对所接受示例的分布进行{良好校准}的不确定性估计进行预测,这是我们称为选择性校准的属性。我们提出了一个用于学习选择性校准模型的框架,其中训练了单独的选择器网络以改善给定基本模型的选择性校准误差。特别是,我们的工作重点是实现强大的校准,该校准有意地设计为在室外数据上进行测试。我们通过受分配强大的优化启发的训练策略实现了这一目标,在该策略中,我们将模拟输入扰动应用于已知的,内域培训数据。我们证明了方法对多个图像分类和肺癌风险评估任务的经验有效性。
translated by 谷歌翻译
The ability to quickly and accurately identify covariate shift at test time is a critical and often overlooked component of safe machine learning systems deployed in high-risk domains. While methods exist for detecting when predictions should not be made on out-of-distribution test examples, identifying distributional level differences between training and test time can help determine when a model should be removed from the deployment setting and retrained. In this work, we define harmful covariate shift (HCS) as a change in distribution that may weaken the generalization of a predictive model. To detect HCS, we use the discordance between an ensemble of classifiers trained to agree on training data and disagree on test data. We derive a loss function for training this ensemble and show that the disagreement rate and entropy represent powerful discriminative statistics for HCS. Empirically, we demonstrate the ability of our method to detect harmful covariate shift with statistical certainty on a variety of high-dimensional datasets. Across numerous domains and modalities, we show state-of-the-art performance compared to existing methods, particularly when the number of observed test samples is small.
translated by 谷歌翻译
现在通常用于高风险设置,如医疗诊断,如医疗诊断,那么需要不确定量化,以避免后续模型失败。无分发的不确定性量化(无分布UQ)是用户友好的范式,用于为这种预测创建统计上严格的置信区间/集合。批判性地,间隔/集合有效而不进行分布假设或模型假设,即使具有最多许多DataPoints也具有显式保证。此外,它们适应输入的难度;当输入示例很困难时,不确定性间隔/集很大,信号传达模型可能是错误的。在没有多大的工作和没有再培训的情况下,可以在任何潜在的算法(例如神经网络)上使用无分​​发方法,以产生置信度集,以便包含用户指定概率,例如90%。实际上,这些方法易于理解和一般,应用于计算机视觉,自然语言处理,深度加强学习等领域出现的许多现代预测问题。这种实践介绍是针对对无需统计学家的免费UQ的实际实施感兴趣的读者。我们通过实际的理论和无分发UQ的应用领导读者,从保形预测开始,并使无关的任何风险的分布控制,如虚假发现率,假阳性分布检测,等等。我们将包括Python中的许多解释性插图,示例和代码样本,具有Pytorch语法。目标是提供读者对无分配UQ的工作理解,使它们能够将置信间隔放在算法上,其中包含一个自包含的文档。
translated by 谷歌翻译
我们介绍了学习然后测试,校准机器学习模型的框架,使其预测满足明确的,有限样本统计保证,无论底层模型如何和(未知)数据生成分布。框架地址,以及在其他示例中,在多标签分类中的错误发现速率控制,在实例分割中交叉联盟控制,以及同时控制分类或回归中的异常检测和置信度覆盖的类型误差。为实现这一目标,我们解决了一个关键的技术挑战:控制不一定单调的任意风险。我们的主要洞察力是将风险控制问题重新构建为多个假设检测,使技术和数学论据不同于先前文献中的技术。我们使用我们的框架为多个核心机器学习任务提供新的校准方法,在计算机视觉中具有详细的工作示例。
translated by 谷歌翻译
部署在现实世界中时,机器学习模型不可避免地遇到数据分布的变化,并且某些 - 但不是全部分布班可能导致显着的性能下降。在实践中,忽略良性移位可能是有意义的,在该频率下,部署模型的性能不会显着降低,不必要地制作人类专家(或模型再培训)的干预。虽然有几种作品已经开发了用于分发班次的测试,但这些通常使用非顺序方法,或者检测任意班次(良性或有害)或两者。我们认为,用于解雇警告的明智方法(a)检测有害移位,同时忽略良性换档,并且(b)允许连续监测模型性能,而不会增加误报率。在这项工作中,我们设计了简单的顺序工具,用于测试源(训练)和目标(测试)分布之间的差异导致感兴趣的风险函数的显着增加,如准确性或校准。构建时均匀置信度序列的最新进展允许在跟踪过程中积累的统计证据进行高效聚合。设计的框架适用于在执行预测之后(某些)真正标签的设置中,或者当批次以延迟的方式获得时批次。我们通过对模拟和真实数据集的集合的广泛实证研究展示了拟议的框架的功效。
translated by 谷歌翻译
学习推迟(L2D)框架有可能使AI系统更安全。对于给定的输入,如果人类比模型更有可能采取正确的行动,则系统可以将决定推迟给人类。我们研究L2D系统的校准,研究它们输出的概率是否合理。我们发现Mozannar&Sontag(2020)多类框架没有针对专家正确性进行校准。此外,由于其参数化是为此目的而退化的,因此甚至不能保证产生有效的概率。我们提出了一个基于单VS-ALL分类器的L2D系统,该系统能够产生专家正确性的校准概率。此外,我们的损失功能也是多类L2D的一致替代,例如Mozannar&Sontag(2020)。我们的实验验证了我们的系统校准不仅是我们的系统校准,而且这种好处无需准确。我们的模型的准确性始终可与Mozannar&Sontag(2020)模型的模型相当(通常是优越),从仇恨言语检测到星系分类到诊断皮肤病变的任务。
translated by 谷歌翻译
域名(ood)概括是机器学习模型的重大挑战。已经提出了许多技术来克服这一挑战,通常专注于具有某些不变性属性的学习模型。在这项工作中,我们绘制了ood性能和模型校准之间的链接,争论跨多个域的校准可以被视为一个特殊的表达,导致更好的EOD泛化。具体而言,我们表明,在某些条件下,实现\ EMPH {多域校准}的模型可被证明无杂散相关性。这导致我们提出多域校准作为分类器的性能的可测量和可训练的代理。因此,我们介绍了易于申请的方法,并允许从业者通过训练或修改现有模型来改善多域校准,从而更好地在看不见的域上的性能。使用最近提出的野外的四个数据集以及彩色的MNIST数据集,我们证明了训练或调整模型,以便在多个域中校准它们导致在看不见的测试域中显着提高性能。我们认为,校准和革建化之间的这种有趣联系是从一个实际和理论的观点出发的。
translated by 谷歌翻译
Accurate uncertainty quantification is a major challenge in deep learning, as neural networks can make overconfident errors and assign high confidence predictions to out-of-distribution (OOD) inputs. The most popular approaches to estimate predictive uncertainty in deep learning are methods that combine predictions from multiple neural networks, such as Bayesian neural networks (BNNs) and deep ensembles. However their practicality in real-time, industrial-scale applications are limited due to the high memory and computational cost. Furthermore, ensembles and BNNs do not necessarily fix all the issues with the underlying member networks. In this work, we study principled approaches to improve uncertainty property of a single network, based on a single, deterministic representation. By formalizing the uncertainty quantification as a minimax learning problem, we first identify distance awareness, i.e., the model's ability to quantify the distance of a testing example from the training data, as a necessary condition for a DNN to achieve high-quality (i.e., minimax optimal) uncertainty estimation. We then propose Spectral-normalized Neural Gaussian Process (SNGP), a simple method that improves the distance-awareness ability of modern DNNs with two simple changes: (1) applying spectral normalization to hidden weights to enforce bi-Lipschitz smoothness in representations and (2) replacing the last output layer with a Gaussian process layer. On a suite of vision and language understanding benchmarks, SNGP outperforms other single-model approaches in prediction, calibration and out-of-domain detection. Furthermore, SNGP provides complementary benefits to popular techniques such as deep ensembles and data augmentation, making it a simple and scalable building block for probabilistic deep learning. Code is open-sourced at https://github.com/google/uncertainty-baselines
translated by 谷歌翻译
We study the fundamental question of how to define and measure the distance from calibration for probabilistic predictors. While the notion of perfect calibration is well-understood, there is no consensus on how to quantify the distance from perfect calibration. Numerous calibration measures have been proposed in the literature, but it is unclear how they compare to each other, and many popular measures such as Expected Calibration Error (ECE) fail to satisfy basic properties like continuity. We present a rigorous framework for analyzing calibration measures, inspired by the literature on property testing. We propose a ground-truth notion of distance from calibration: the $\ell_1$ distance to the nearest perfectly calibrated predictor. We define a consistent calibration measure as one that is a polynomial factor approximation to the this distance. Applying our framework, we identify three calibration measures that are consistent and can be estimated efficiently: smooth calibration, interval calibration, and Laplace kernel calibration. The former two give quadratic approximations to the ground truth distance, which we show is information-theoretically optimal. Our work thus establishes fundamental lower and upper bounds on measuring distance to calibration, and also provides theoretical justification for preferring certain metrics (like Laplace kernel calibration) in practice.
translated by 谷歌翻译
尽管现代的大规模数据集通常由异质亚群(例如,多个人口统计组或多个文本语料库)组成 - 最小化平均损失的标准实践并不能保证所有亚人群中均匀的低损失。我们提出了一个凸面程序,该过程控制给定尺寸的所有亚群中最差的表现。我们的程序包括有限样本(非参数)收敛的保证,可以保证最坏的亚群。从经验上讲,我们观察到词汇相似性,葡萄酒质量和累犯预测任务,我们最糟糕的程序学习了对不看到看不见的亚人群的模型。
translated by 谷歌翻译
有效的决策需要了解预测中固有的不确定性。在回归中,这种不确定性可以通过各种方法估算;然而,许多这些方法对调谐进行费力,产生过度自确性的不确定性间隔,或缺乏敏锐度(给予不精确的间隔)。我们通过提出一种通过定义具有两个不同损失功能的神经网络来捕获回归中的预测分布的新方法来解决这些挑战。具体地,一个网络近似于累积分布函数,第二网络近似于其逆。我们将此方法称为合作网络(CN)。理论分析表明,优化的固定点处于理想化的解决方案,并且该方法是渐近的与地面真理分布一致。凭经验,学习是简单且强大的。我们基准CN对两个合成和六个现实世界数据集的几种常见方法,包括预测来自电子健康记录的糖尿病患者的A1C值,其中不确定是至关重要的。在合成数据中,所提出的方法与基本上匹配地面真理。在真实世界数据集中,CN提高了许多性能度量的结果,包括对数似然估计,平均误差,覆盖估计和预测间隔宽度。
translated by 谷歌翻译
本文介绍了分类器校准原理和实践的简介和详细概述。校准的分类器正确地量化了与其实例明智的预测相关的不确定性或信心水平。这对于关键应用,最佳决策,成本敏感的分类以及某些类型的上下文变化至关重要。校准研究具有丰富的历史,其中几十年来预测机器学习作为学术领域的诞生。然而,校准兴趣的最近增加导致了新的方法和从二进制到多种子体设置的扩展。需要考虑的选项和问题的空间很大,并导航它需要正确的概念和工具集。我们提供了主要概念和方法的介绍性材料和最新的技术细节,包括适当的评分规则和其他评估指标,可视化方法,全面陈述二进制和多字数分类的HOC校准方法,以及几个先进的话题。
translated by 谷歌翻译
本文开发了新型的保形方法,以测试是否从与参考集相同的分布中采样了新的观察结果。以创新的方式将感应性和偏置的共形推断融合,所描述的方法可以以原则性的方式基于已知的分布式数据的依赖侧信息重新权重标准p值,并且可以自动利用最强大的优势来自任何一级和二进制分类器的模型。该解决方案可以通过样品分裂或通过新颖的转置交叉验证+方案来实现,该方案与现有的交叉验证方法相比,由于更严格的保证,这也可能在共形推理的其他应用中有用。在研究错误的发现率控制和在具有几个可能的离群值的多个测试框架内的虚假发现率控制和功率之后,提出的解决方案被证明通过模拟以及用于图像识别和表格数据的应用超过了标准的共形P值。
translated by 谷歌翻译
卷积图像分类器可以实现高预测的准确性,但是量化其不确定性仍然是尚未解决的挑战,阻碍了他们在结果环境中的部署。现有的不确定性量化技术(例如PLATT缩放)试图校准网络的概率估计,但它们没有正式的保证。我们提出了一种算法,该算法会修改任何分类器,以输出包含具有用户指定概率的真实标签的预测集,例如90%。该算法像PLATT缩放一样简单快捷,但为每个模型和数据集提供了正式的有限样本覆盖范围保证。我们的方法修改了现有的保形预测算法,从而通过在PLATT缩放后正规化不太可能的类别分数来提供更稳定的预测集。在具有RESNET-152和其他分类器的ImageNet和Imagenet-V2的实验中,我们的方案的表现优于现有方法,通过通常比独立PLATT缩放基线小的5到10个因素实现覆盖范围。
translated by 谷歌翻译
适应数据分布的结构(例如对称性和转型Imarerces)是机器学习中的重要挑战。通过架构设计或通过增强数据集,可以内在学习过程中内置Inhormces。两者都需要先验的了解对称性的确切性质。缺乏这种知识,从业者求助于昂贵且耗时的调整。为了解决这个问题,我们提出了一种新的方法来学习增强变换的分布,以新的\ emph {转换风险最小化}(trm)框架。除了预测模型之外,我们还优化了从假说空间中选择的转换。作为算法框架,我们的TRM方法是(1)有效(共同学习增强和模型,以\ emph {单训练环}),(2)模块化(使用\ emph {任何训练算法),以及(3)一般(处理\ \ ich {离散和连续}增强)。理论上与标准风险最小化的TRM比较,并在其泛化误差上给出PAC-Bayes上限。我们建议通过块组成的新参数化优化富裕的增强空间,导致新的\ EMPH {随机成分增强学习}(SCALE)算法。我们在CIFAR10 / 100,SVHN上使用先前的方法(快速自身自动化和武术器)进行实际比较规模。此外,我们表明规模可以在数据分布中正确地学习某些对称性(恢复旋转Mnist上的旋转),并且还可以改善学习模型的校准。
translated by 谷歌翻译
机器学习(ML)越来越多地用于支持高风险的决策,这是由于其相对于人类评估的优势预测能力的承诺而欠的趋势。但是,决策目标与观察到的作为训练ML模型的标签的结果中捕获的内容之间经常存在差距。结果,机器学习模型可能无法捕获决策标准的重要维度,从而阻碍了他们的决策支持。在这项工作中,我们探讨了历史专家决策作为组织信息系统中通常可用的丰富(但不完美)的信息来源,并表明它可以利用它来弥合决策目标与算法目标之间的差距。当数据中的每个案例都由单个专家评估并提出基于影响函数的方法作为解决此问题的解决方案时,我们会间接考虑估计专家一致性的问题。然后,我们将估计的专家一致性通过培训时间标签合并方法纳入预测模型。这种方法使ML模型可以在有推断的专家一致性和观察标签的情况下向专家学习。我们还提出了通过混合和延期模型来利用推断一致性的替代方法。在我们的经验评估中,专注于儿童虐待热线筛查的背景下,我们表明(1)有一些高风险案例,其风险是专家考虑的,但在目标标签中没有完全捕获用于培训已部署模型和培训的目标标签(2)提出的方法可显着提高这些情况的精度。
translated by 谷歌翻译
许多选择过程,例如寻找有资格参加医学试验的患者或在搜索引擎中检索管道的供应,其中包括多个阶段,初始筛查阶段将资源集中在候选名单上最有前途的候选人。在本文中,我们研究了保证筛选分类器可以提供的内容,而不是手动构造还是训练。我们发现当前的解决方案不享受无分配的理论保证 - 我们表明,通常,即使对于完美校准的分类器,也总是存在特定的候选人库,其候选名单是次优的。然后,我们开发了一种无分布的筛选算法(称为校准子集选择(CSS)),给定任何分类器和一定数量的校准数据,发现近乎最佳的候选者候选人,这些候选者包含预期的预期数量的合格候选者。此外,我们表明,在特定组中多次校准给定分类器的CSS变体可以创建具有可证明多样性保证的候选名单。关于美国人口普查调查数据的实验验证了我们的理论结果,并表明我们算法提供的候选名单优于几个竞争基线提供的列表。
translated by 谷歌翻译
Several recent works find empirically that the average test error of deep neural networks can be estimated via the prediction disagreement of models, which does not require labels. In particular, Jiang et al. (2022) show for the disagreement between two separately trained networks that this `Generalization Disagreement Equality' follows from the well-calibrated nature of deep ensembles under the notion of a proposed `class-aggregated calibration.' In this reproduction, we show that the suggested theory might be impractical because a deep ensemble's calibration can deteriorate as prediction disagreement increases, which is precisely when the coupling of test error and disagreement is of interest, while labels are needed to estimate the calibration on new datasets. Further, we simplify the theoretical statements and proofs, showing them to be straightforward within a probabilistic context, unlike the original hypothesis space view employed by Jiang et al. (2022).
translated by 谷歌翻译
人工智能的最新趋势是将验证的模型用于语言和视觉任务,这些模型已经实现了非凡的表现,但也令人困惑。因此,以各种方式探索这些模型的能力对该领域至关重要。在本文中,我们探讨了模型的可靠性,在其中我们将可靠的模型定义为一个不仅可以实现强大的预测性能,而且在许多涉及不确定性(例如选择性预测,开放式设置识别)的决策任务上,在许多决策任务上表现出色,而且表现良好。强大的概括(例如,准确性和适当的评分规则,例如在分布数据集中和分发数据集上的对数可能性)和适应性(例如,主动学习,几乎没有射击不确定性)。我们设计了40个数据集的10种任务类型,以评估视觉和语言域上可靠性的不同方面。为了提高可靠性,我们分别开发了VIT-PLEX和T5-PLEX,分别针对视觉和语言方式扩展了大型模型。 PLEX极大地改善了跨可靠性任务的最先进,并简化了传统协议,因为它可以改善开箱即用的性能,并且不需要设计分数或为每个任务调整模型。我们演示了高达1B参数的模型尺寸的缩放效果,并预处理数据集大小最多4B示例。我们还展示了PLEX在具有挑战性的任务上的功能,包括零射门的开放式识别,主动学习和对话语言理解中的不确定性。
translated by 谷歌翻译
域的概括(DG)通过利用来自多个相关分布或域的标记培训数据在看不见的测试分布上表现良好的预测因子。为了实现这一目标,标准公式优化了所有可能域的最差性能。但是,由于最糟糕的转变在实践中的转变极不可能,这通常会导致过度保守的解决方案。实际上,最近的一项研究发现,没有DG算法在平均性能方面优于经验风险最小化。在这项工作中,我们认为DG既不是最坏的问题,也不是一个普通的问题,而是概率问题。为此,我们为DG提出了一个概率框架,我们称之为可能的域概括,其中我们的关键想法是在训练期间看到的分配变化应在测试时告诉我们可能的变化。为了实现这一目标,我们将培训和测试域明确关联为从同一基础元分布中获取的,并提出了一个新的优化问题 - 分数风险最小化(QRM) - 要求该预测因子以很高的概率概括。然后,我们证明了QRM:(i)产生的预测因子,这些预测因素将具有所需概率的新域(给定足够多的域和样本); (ii)随着概括的所需概率接近一个,恢复因果预测因子。在我们的实验中,我们引入了针对DG的更全面的以分位数评估协议,并表明我们的算法在真实和合成数据上的最先进基准都优于最先进的基准。
translated by 谷歌翻译