量子联合学习(QFL)最近受到了越来越多的关注,其中量子神经网络(QNN)集成到联邦学习(FL)中。与现有的静态QFL方法相反,我们在本文中提出了可靠的QFL(SLIMQFL),这是一个动态QFL框架,可以应对时变的通信通道和计算能量限制。通过利用QNN的独特性质,可以分别训练并动态利用其角度参数,从而使其可行。模拟结果证实了SLIMQFL比香草QFL更高的分类精度,尤其是在较差的通道条件下。
translated by 谷歌翻译
While witnessing the noisy intermediate-scale quantum (NISQ) era and beyond, quantum federated learning (QFL) has recently become an emerging field of study. In QFL, each quantum computer or device locally trains its quantum neural network (QNN) with trainable gates, and communicates only these gate parameters over classical channels, without costly quantum communications. Towards enabling QFL under various channel conditions, in this article we develop a depth-controllable architecture of entangled slimmable quantum neural networks (eSQNNs), and propose an entangled slimmable QFL (eSQFL) that communicates the superposition-coded parameters of eS-QNNs. Compared to the existing depth-fixed QNNs, training the depth-controllable eSQNN architecture is more challenging due to high entanglement entropy and inter-depth interference, which are mitigated by introducing entanglement controlled universal (CU) gates and an inplace fidelity distillation (IPFD) regularizer penalizing inter-depth quantum state differences, respectively. Furthermore, we optimize the superposition coding power allocation by deriving and minimizing the convergence bound of eSQFL. In an image classification task, extensive simulations corroborate the effectiveness of eSQFL in terms of prediction accuracy, fidelity, and entropy compared to Vanilla QFL as well as under different channel conditions and various data distributions.
translated by 谷歌翻译
Federated learning (FL) is a key enabler for efficient communication and computing, leveraging devices' distributed computing capabilities. However, applying FL in practice is challenging due to the local devices' heterogeneous energy, wireless channel conditions, and non-independently and identically distributed (non-IID) data distributions. To cope with these issues, this paper proposes a novel learning framework by integrating FL and width-adjustable slimmable neural networks (SNN). Integrating FL with SNNs is challenging due to time-varying channel conditions and data distributions. In addition, existing multi-width SNN training algorithms are sensitive to the data distributions across devices, which makes SNN ill-suited for FL. Motivated by this, we propose a communication and energy-efficient SNN-based FL (named SlimFL) that jointly utilizes superposition coding (SC) for global model aggregation and superposition training (ST) for updating local models. By applying SC, SlimFL exchanges the superposition of multiple-width configurations decoded as many times as possible for a given communication throughput. Leveraging ST, SlimFL aligns the forward propagation of different width configurations while avoiding inter-width interference during backpropagation. We formally prove the convergence of SlimFL. The result reveals that SlimFL is not only communication-efficient but also deals with non-IID data distributions and poor channel conditions, which is also corroborated by data-intensive simulations.
translated by 谷歌翻译
移动设备是大数据的不可或缺的来源。联合学习(FL)通过交换本地培训的模型而不是其原始数据来利用这些私人数据具有很大的潜力。然而,移动设备通常是能量有限且无线连接的,并且FL不能灵活地应对它们的异构和时变的能量容量和通信吞吐量,限制采用。通过这些问题,我们提出了一种新颖的能源和通信有效的流动框架,被创造的Slimfl。为了解决异构能量容量问题,SLIMFL中的每个设备都运行宽度可调可泥瓦神经网络(SNN)。为了解决异构通信吞吐量问题,每个全宽(1.0倍)SNN模型及其半宽度(0.5美元$ x)模型在传输之前是叠加编码的,并且在接收后连续解码为0.5x或1.0美元$ 1.0 $ x模型取决于频道质量。仿真结果表明,SLIMFL可以通过合理的精度和收敛速度同时培养0.5美元和1.0美元的X模型,而是使用2美元的通信资源分别培训这两种型号。令人惊讶的是,SLIMFL甚至具有比Vanilla FL的较低的能量占地面积更高的精度,对于较差的通道和非IID数据分布,Vanilla Fl会缓慢收敛。
translated by 谷歌翻译
本文旨在整合两个协同技术,联合学习(FL)和宽度可调的可泥质网络(SNN)架构。通过交换当地培训的移动设备模型来保留数据隐私。通过采用SNNS作为本地模型,FL可以灵活地应对移动设备的时变能容量。然而,结合FL和SNN是非琐碎的,特别是在与时变通道条件的无线连接下。此外,现有的多宽SNN训练算法对跨设备的数据分布敏感,因此不适用于FL。由此激励,我们提出了一种通信和节能SNN的FL(命名SLIMFL),共同利用叠加编码(SC)进行全局模型聚合和叠加训练(ST),以更新本地模型。通过施加SC,SLIMFL交换多个宽度配置的叠加,这对于给定的通信吞吐量尽可能多地解码。利用ST,SLIMFL对准不同宽度配置的前向传播,同时避免在背部衰退期间的横宽干扰。我们正式证明了Slimfl的融合。结果表明,SLIMFL不仅是通信的,而且可以抵消非IID数据分布和差的信道条件,这也被模拟证实。
translated by 谷歌翻译
尽管量子至高无上尚未到来,但最近在实用量子计算的迫在眉睫的时代,人们对​​确定量子机学习的潜力(QML)的兴趣越来越大。由此激励,在本文中,我们基于具有两个单独的可训练参数的单独维度的量子神经网络(QNN)的独特特征重新设计多代理增强学习(MARL):影响输出Qubit状态和极点参数的角度参数:与输出测量基础相关。我们提出了将这种二元训练性作为元学习能力,我们提出了量子元marl(QM2ARL),该量子元MARL(QM2ARL)首先应用角度训练进行元学习,然后进行极点训练,以进行几次射击或局部QNN培训。为了避免过度拟合,我们在角度训练期间开发了一种将噪声注入到极域中的角度正则化技术。此外,通过将极点作为每个受过训练的QNN的内存地址利用,我们介绍了极点内存的概念,允许仅使用两参数极点值保存和加载经过训练的QNN。从理论上讲,我们证明了角度到极正则化下的角度训练的收敛性,并通过模拟证实了QM2ARL在获得高奖励和快速收敛方面的有效性,以及在快速适应时间变化环境中的极点记忆。
translated by 谷歌翻译
使用量子卷积神经网络(QCNN)的机器学习在量子和经典数据分类中都取得了成功。在先前的研究中,在少数参数制度中,在相同的训练条件下,QCNN的分类准确性比其经典对应物具有更高的分类精度。但是,由于量子电路的大小有限,因此很难检查大规模量子模型的一般性能,这可以在不久的将来可靠地实施。我们建议转移学习是在嘈杂的中间量子量子时代利用小QCNN的有效策略。在经典到量词转移学习框架中,QCNN可以通过使用预训练的经典卷积神经网络(CNN)来解决复杂的分类问题,而无需大规模量子电路。我们对QCNN模型进行了数值模拟,并在转移学习下对MNIST数据分类进行了各种量子卷积和汇总操作,其中经典的CNN经过了时尚持续数据的培训。结果表明,在相似的训练条件下,从经典到量子CNN的转移学习比纯粹的经典转移学习模型要好得多。
translated by 谷歌翻译
联合学习是指通过从多个客户端进行分散数据执行机器学习的任务,同时保护数据安全和隐私。在这种情况下,已经完成了将量子优势纳入量子优势的工作。但是,当客户的数据不是独立且分布相同(IID)时,常规联合算法的性能会恶化。在这项工作中,我们通过理论和数值分析探索了量子制度中的这种现象。我们进一步证明,在局部密度估计器的帮助下,可以将一个全局量子通道完全分解为由每个客户训练的通道。它导致一个通用框架,用于具有一声通信复杂性的非IID数据的量子联合学习。我们在使用数值模拟的分类任务上进行了演示。
translated by 谷歌翻译
In recent times, Variational Quantum Circuits (VQC) have been widely adopted to different tasks in machine learning such as Combinatorial Optimization and Supervised Learning. With the growing interest, it is pertinent to study the boundaries of the classical simulation of VQCs to effectively benchmark the algorithms. Classically simulating VQCs can also provide the quantum algorithms with a better initialization reducing the amount of quantum resources needed to train the algorithm. This manuscript proposes an algorithm that compresses the quantum state within a circuit using a tensor ring representation which allows for the implementation of VQC based algorithms on a classical simulator at a fraction of the usual storage and computational complexity. Using the tensor ring approximation of the input quantum state, we propose a method that applies the parametrized unitary operations while retaining the low-rank structure of the tensor ring corresponding to the transformed quantum state, providing an exponential improvement of storage and computational time in the number of qubits and layers. This approximation is used to implement the tensor ring VQC for the task of supervised learning on Iris and MNIST datasets to demonstrate the comparable performance as that of the implementations from classical simulator using Matrix Product States.
translated by 谷歌翻译
Quantum机器学习目前正在受到极大的关注,但是与实用应用的经典机器学习技术相比,其有用性尚不清楚。但是,有迹象表明,某些量子机学习算法可能会提高其经典同行的培训能力 - 在很少有培训数据的情况下,这在情况下可能特别有益。这种情况自然出现在医学分类任务中。在本文中,提出了不同的杂种量子卷积神经网络(QCCNN),提出了不同的量子电路设计和编码技术。它们应用于二维医学成像数据,例如在计算机断层扫描中具有不同的,潜在的恶性病变。这些QCCNN的性能已经与它们的经典同行之一相似,因此鼓励进一步研究将这些算法应用于医学成像任务的方向。
translated by 谷歌翻译
随着嘈杂的中间量子量子(NISQ)时代的开始,量子神经网络(QNN)最近已成为解决经典神经网络无法解决的问题的解决方案。此外,QCNN吸引了作为下一代QNN的注意力,因为它可以处理高维矢量输入。但是,由于量子计算的性质,经典QCNN很难提取足够数量的功能。在此激励的情况下,我们提出了一种新版本的QCNN,称为可伸缩量子卷积神经网络(SQCNN)。此外,使用QC的保真度,我们提出了一种名为ReverseDelity Trainity(RF-Train)的SQCNN培训算法,可最大程度地提高SQCNN的性能。
translated by 谷歌翻译
随着量子计算和深度学习的快速发展,量子神经网络最近引起了极大的关注。通过利用量子计算的力量,深度神经网络可以潜在地克服经典机器学习中的计算功率限制。但是,当多个量子机希望使用每台计算机上的本地数据训练全局模型时,将数据复制到一台计算机并训练模型可能非常困难。因此,必须进行协作量子神经网络框架。在本文中,我们借用了联合学习提出量子的核心思想,该量子是一个量子联合学习框架,可以将多个量子节点与局部量子数据一起训练一个模式。我们的实验显示了我们框架的可行性和鲁棒性。
translated by 谷歌翻译
联合学习(FL)使移动设备能够在保留本地数据的同时协作学习共享的预测模型。但是,实际上在移动设备上部署FL存在两个主要的研究挑战:(i)频繁的无线梯度更新v.s.频谱资源有限,以及(ii)培训期间渴望的FL通信和本地计算V.S.电池约束的移动设备。为了应对这些挑战,在本文中,我们提出了一种新型的多位空天空计算(MAIRCOMP)方法,用于FL中本地模型更新的频谱有效聚合,并进一步介绍用于移动的能源有效的FL设计设备。具体而言,高精度数字调制方案是在MAIRCOMP中设计和合并的,允许移动设备同时在多访问通道中同时在所选位置上传模型更新。此外,我们理论上分析了FL算法的收敛性。在FL收敛分析的指导下,我们制定了联合传输概率和局部计算控制优化,旨在最大程度地减少FL移动设备的总体能源消耗(即迭代局部计算 +多轮通信)。广泛的仿真结果表明,我们提出的方案在频谱利用率,能源效率和学习准确性方面优于现有计划。
translated by 谷歌翻译
最近的工作已经开始探索参数化量子电路(PQC)作为一般函数近似器的潜力。在这项工作中,我们提出了一种量子古典的深网络结构,以提高经典的CNN模型辨别性。卷积层使用线性滤波器来扫描输入数据。此外,我们构建PQC,这是一种更有效的函数近似器,具有更复杂的结构,以捕获接收领域内的特征。通过以与CNN类似的方式将PQC滑过输入来获得特征图。我们还为所提出的模型提供培训算法。我们设计中使用的混合模型通过数值模拟验证。我们展示了MNIST上合理的分类性能,我们将性能与不同的设置中的模型进行比较。结果揭示了具有高表现性的ANSATZ模型实现了更低的成本和更高的准确性。
translated by 谷歌翻译
在这项工作中,我们利用量子深的增强学习作为方法,以在三个模拟的复杂性的模拟环境中为简单的,轮式机器人学习导航任务。我们显示了与经典基线相比,在混合量子古典设置中训练有良好建立的深钢筋学习技术的参数化量子电路的相似性能。据我们所知,这是用于机器人行为的量子机学习(QML)的首次演示。因此,我们将机器人技术建立为QML算法的可行研究领域,此后量子计算和量子机学习是自治机器人技术未来进步的潜在技术。除此之外,我们讨论了当前的方法的限制以及自动机器人量子机学习领域的未来研究方向。
translated by 谷歌翻译
Powerful hardware services and software libraries are vital tools for quickly and affordably designing, testing, and executing quantum algorithms. A robust large-scale study of how the performance of these platforms scales with the number of qubits is key to providing quantum solutions to challenging industry problems. Such an evaluation is difficult owing to the availability and price of physical quantum processing units. This work benchmarks the runtime and accuracy for a representative sample of specialized high-performance simulated and physical quantum processing units. Results show the QMware cloud computing service can reduce the runtime for executing a quantum circuit by up to 78% compared to the next fastest option for algorithms with fewer than 27 qubits. The AWS SV1 simulator offers a runtime advantage for larger circuits, up to the maximum 34 qubits available with SV1. Beyond this limit, QMware provides the ability to execute circuits as large as 40 qubits. Physical quantum devices, such as Rigetti's Aspen-M2, can provide an exponential runtime advantage for circuits with more than 30. However, the high financial cost of physical quantum processing units presents a serious barrier to practical use. Moreover, of the four quantum devices tested, only IonQ's Harmony achieves high fidelity with more than four qubits. This study paves the way to understanding the optimal combination of available software and hardware for executing practical quantum algorithms.
translated by 谷歌翻译
在低地球轨道(LEO)Mega Constellation中,有相关的用例,例如基于卫星成像的推断,其中大量卫星在不共享其本地数据集的情况下协作机器学习模型。为了解决这个问题,我们提出了一种基于联合学习(FL)的新一套算法,包括基于FedAVG的新型异步流程,其对异构情景具有比最先进的异构情景更好的鲁棒性。基于MNIST和CIFAR-10数据集的广泛数值评估突出了所提出的方法的快速收敛速度和优异的渐近试验精度。
translated by 谷歌翻译
模型压缩(例如修剪和量化)已广泛应用于在资源有限的经典设备上优化神经网络。最近,对变分量子电路(VQC)的兴趣越来越大,即量子计算机上的一种神经网络(又称量子神经网络)。众所周知,近期的量子设备具有高噪声和有限的资源(即量子位,Qubits);但是,如何压缩量子神经网络尚未得到彻底研究。人们可能会认为将经典压缩技术应用于量子场景是很简单的。但是,本文表明,量子和经典神经网络的压缩之间存在差异。根据我们的观察,我们声称必须参与压缩过程。最重要的是,我们提出了第一个系统的框架,即CompVQC,以压缩量子神经网络(QNNS)。在CompVQC中,关键组件是一种新型的压缩算法,该算法基于乘数的交替方向方法(ADMM)。方法。实验证明了COMPVQC的优势,以微不足道的精度下降(<1%)降低了电路深度(几乎超过2.5%),这表现优于其他竞争对手。另一个有前途的事实是,我们的COMPVQC确实可以促进QNN在近期噪声量子设备上的鲁棒性。
translated by 谷歌翻译
变分量子本层(VQE)是一种领先的策略,可利用嘈杂的中间量子量子(NISQ)机器来解决化学问题的表现优于经典方法。为了获得大规模问题的计算优势,可行的解决方案是量子分布式优化(QUDIO)方案,该方案将原始问题分配到$ K $子问题中,并将其分配给$ K $量子机器,然后将其分配给并行优化。尽管有可证明的加速度比率,但Qudio的效率可能会因同步操作而大大降低。为了征服这个问题,我们在这里提议在量子分布式优化期间,将洗牌措施涉及到当地的汉密尔顿人。与Qudio相比,Shuffle-Qudio显着降低了量子处理器之间的通信频率,并同时达到了更好的训练性。特别是,我们证明,Shuffle-Qudio可以比Qudio更快地收敛速率。进行了广泛的数值实验,以验证估计分子的基态能量的任务中,隔离式时间速度允许壁式时间速度和低近似误差。我们从经验上证明,我们的建议可以与其他加速技术(例如操作员分组)无缝集成,以进一步提高VQE的疗效。
translated by 谷歌翻译
在量子计算中,变分量子算法(VQAS)非常适合于在从化学中寻找特定应用中的物品的最佳组合一切融资。具有梯度下降优化算法的VQA的训练显示出良好的收敛性。在早期阶段,在嘈杂的中间级量子(NISQ)器件上的变分量子电路的模拟遭受了嘈杂的输出。就像古典深度学习一样,它也遭受了消失的渐变问题。研究损失景观的拓扑结构是一种逼真的目标,以在消失梯度存在的存在下可视化这些电路的曲率信息和可训练。在本文中,我们计算了Hessian,并在参数空间中的不同点处可视化变分量子分类器的损失景观。解释变分量子分类器(VQC)的曲率信息,并显示了损耗函数的收敛。它有助于我们更好地了解变形量子电路的行为,以有效地解决优化问题。我们通过Hessian在量子计算机上调查了变形量子分类器,从一个简单的4位奇偶校验问题开始,以获得对黑森州的实际行为的洞察力,然后彻底分析了Hessian的特征值对培训糖尿病数据集的变分量子分类器的行为。最后,我们展示了自适应Hessian学习率如何在训练变分电路时影响收敛。
translated by 谷歌翻译