联合学习(FL)使移动设备能够在保留本地数据的同时协作学习共享的预测模型。但是,实际上在移动设备上部署FL存在两个主要的研究挑战:(i)频繁的无线梯度更新v.s.频谱资源有限,以及(ii)培训期间渴望的FL通信和本地计算V.S.电池约束的移动设备。为了应对这些挑战,在本文中,我们提出了一种新型的多位空天空计算(MAIRCOMP)方法,用于FL中本地模型更新的频谱有效聚合,并进一步介绍用于移动的能源有效的FL设计设备。具体而言,高精度数字调制方案是在MAIRCOMP中设计和合并的,允许移动设备同时在多访问通道中同时在所选位置上传模型更新。此外,我们理论上分析了FL算法的收敛性。在FL收敛分析的指导下,我们制定了联合传输概率和局部计算控制优化,旨在最大程度地减少FL移动设备的总体能源消耗(即迭代局部计算 +多轮通信)。广泛的仿真结果表明,我们提出的方案在频谱利用率,能源效率和学习准确性方面优于现有计划。
translated by 谷歌翻译
预计未来的无线网络将支持各种移动服务,包括人工智能(AI)服务和无处不在的数据传输。联合学习(FL)作为一种革命性的学习方法,可以跨分布式移动边缘设备进行协作AI模型培训。通过利用多访问通道的叠加属性,无线计算允许同时通过同一无线电资源从大型设备上传,因此大大降低了FL的通信成本。在本文中,我们研究了移动边缘网络中的无线信息和传统信息传输(IT)的共存。我们提出了一个共存的联合学习和信息传输(CFLIT)通信框架,其中FL和IT设备在OFDM系统中共享无线频谱。在此框架下,我们旨在通过优化长期无线电资源分配来最大化IT数据速率并确保给定的FL收敛性能。限制共存系统频谱效率的主要挑战在于,由于服务器和边缘设备之间的频繁通信以进行FL模型聚合,因此发生的大开销。为了应对挑战,我们严格地分析了计算与通信比对无线褪色通道中无线FL融合的影响。该分析揭示了存在最佳计算与通信比率的存在,该比率最大程度地降低了空中FL所需的无线电资源量,以收敛到给定的错误公差。基于分析,我们提出了一种低复杂性在线算法,以共同优化FL设备和IT设备的无线电资源分配。广泛的数值模拟验证了FL和IT设备在无线蜂窝系统中共存的拟议设计的出色性能。
translated by 谷歌翻译
随着数据生成越来越多地在没有连接连接的设备上进行,因此与机器学习(ML)相关的流量将在无线网络中无处不在。许多研究表明,传统的无线协议高效或不可持续以支持ML,这创造了对新的无线通信方法的需求。在这项调查中,我们对最先进的无线方法进行了详尽的审查,这些方法是专门设计用于支持分布式数据集的ML服务的。当前,文献中有两个明确的主题,模拟的无线计算和针对ML优化的数字无线电资源管理。这项调查对这些方法进行了全面的介绍,回顾了最重要的作品,突出了开放问题并讨论了应用程序方案。
translated by 谷歌翻译
联合学习(FL)能够通过定期聚合培训的本地参数来在多个边缘用户执行大的分布式机器学习任务。为了解决在无线迷雾云系统上实现支持的关键挑战(例如,非IID数据,用户异质性),我们首先基于联合平均(称为FedFog)的高效流行算法来执行梯度参数的本地聚合在云端的FOG服务器和全球培训更新。接下来,我们通过调查新的网络知识的流动系统,在无线雾云系统中雇用FEDFog,这促使了全局损失和完成时间之间的平衡。然后开发了一种迭代算法以获得系统性能的精确测量,这有助于设计有效的停止标准以输出适当数量的全局轮次。为了缓解级体效果,我们提出了一种灵活的用户聚合策略,可以先培训快速用户在允许慢速用户加入全局培训更新之前获得一定程度的准确性。提供了使用若干现实世界流行任务的广泛数值结果来验证FEDFOG的理论融合。我们还表明,拟议的FL和通信的共同设计对于在实现学习模型的可比准确性的同时,基本上提高资源利用是必要的。
translated by 谷歌翻译
联邦元学习(FML)已成为应对当今边缘学习竞技场中的数据限制和异质性挑战的承诺范式。然而,其性能通常受到缓慢的收敛性和相应的低通信效率的限制。此外,由于可用的无线电频谱和物联网设备的能量容量通常不足,因此在在实际无线网络中部署FML时,控制资源分配和能量消耗是至关重要的。为了克服挑战,在本文中,我们严格地分析了每个设备对每轮全球损失减少的贡献,并使用非统一的设备选择方案开发FML算法(称为Nufm)以加速收敛。之后,我们制定了集成NuFM在多通道无线系统中的资源分配问题,共同提高收敛速率并最小化壁钟时间以及能量成本。通过逐步解构原始问题,我们设计了一个联合设备选择和资源分配策略,以解决理论保证问题。此外,我们表明Nufm的计算复杂性可以通过$ O(d ^ 2)$至$ o(d)$(使用模型维度$ d $)通过组合两个一阶近似技术来降低。广泛的仿真结果表明,与现有基线相比,所提出的方法的有效性和优越性。
translated by 谷歌翻译
当上行链路和下行链路通信都有错误时联合学习(FL)工作吗?通信噪音可以处理多少,其对学习性能的影响是什么?这项工作致力于通过明确地纳入流水线中的上行链路和下行链路嘈杂的信道来回答这些实际重要的问题。我们在同时上行链路和下行链路嘈杂通信通道上提供了多种新的融合分析,其包括完整和部分客户端参与,直接模型和模型差分传输,以及非独立和相同分布的(IID)本地数据集。这些分析表征了嘈杂通道的流动条件,使其具有与无通信错误的理想情况相同的融合行为。更具体地,为了保持FEDAVG的O(1 / T)具有完美通信的O(1 / T)收敛速率,应控制用于直接模型传输的上行链路和下行链路信噪比(SNR),使得它们被缩放为O(t ^ 2)其中T是通信轮的索引,但可以保持常量的模型差分传输。这些理论结果的关键洞察力是“雷达下的飞行”原则 - 随机梯度下降(SGD)是一个固有的噪声过程,并且可以容忍上行链路/下行链路通信噪声,只要它们不占据时变的SGD噪声即可。我们举例说明了具有两种广泛采用的通信技术 - 传输功率控制和多样性组合的这些理论发现 - 并通过使用多个真实世界流动任务的广泛数值实验进一步通过标准方法验证它们的性能优势。
translated by 谷歌翻译
通过增加无线设备的计算能力,以及用户和设备生成的数据的前所未有的级别,已经出现了新的分布式机器学习(ML)方法。在无线社区中,由于其通信效率及其处理非IID数据问题的能力,联邦学习(FL)特别有趣。可以通过称为空中计算(AIRCOMP)的无线通信方法加速FL训练,其利用同时上行链路传输的干扰以有效地聚合模型更新。但是,由于Aircomp利用模拟通信,因此它引入了不可避免的估计错误。在本文中,我们研究了这种估计误差对FL的收敛性的影响,并提出了一种改进资源受限无线网络的方法的转移。首先,我们通过静态通道重新传输获得最佳Aircomp电源控制方案。然后,我们调查了传递的空中流体的性能,并在流失函数上找到两个上限。最后,我们提出了一种选择最佳重传的启发式,可以在训练ML模型之前计算。数值结果表明,引入重传可能导致ML性能提高,而不会在通信或计算方面产生额外的成本。此外,我们为我们的启发式提供了模拟结果,表明它可以正确地确定不同无线网络设置和机器学习问题的最佳重传次数。
translated by 谷歌翻译
在本文中,提出了一个绿色,量化的FL框架,该框架在本地培训和上行链路传输中代表具有有限精度水平的数据。在这里,有限的精度级别是通过使用量化的神经网络(QNN)来捕获的,该神经网络(QNN)以固定精确格式量化权重和激活。在考虑的FL模型中,每个设备训练其QNN并将量化的训练结果传输到基站。严格得出了局部训练和传输的能量模型。为了同时最大程度地减少能耗和交流的数量,相对于本地迭代的数量,选定设备的数量以及本地培训和传输的精确级别,在确保融合的同时,提出了多目标优化问题目标准确性约束。为了解决此问题,相对于系统控制变量,分析得出所提出的FL系统的收敛速率。然后,该问题的帕累托边界被表征为使用正常边界检查方法提供有效的解决方案。通过使用NASH讨价还价解决方案并分析派生的收敛速率,从两个目标之间平衡了两种目标之间的权衡的洞察力。仿真结果表明,与代表完全精确的数据相比,提出的FL框架可以减少能源消耗,直到收敛高达52%。
translated by 谷歌翻译
联合学习(FL)是一个带有边缘计算的充填地的新兴分布式机器学习范式,是具有在移动边缘设备上具有新颖应用的有前途的区域。在FL中,由于移动设备通过共享模型更新,因此在中央服务器的协调下基于其自身的数据进行组合培训模型,培训数据保持私密。但是,在没有数据的核心可用性的情况下,计算节点需要经常传送模型更新以获得汇聚。因此,本地计算时间与将本地模型更新一起创建本地模型更新以及从服务器发送到服务器的时间导致总时间的延迟。此外,不可靠的网络连接可以妨碍这些更新的有效通信。为了解决这些问题,我们提出了一个延迟有效的流动机制,可以减少模型融合所需的总时间(包括计算和通信延迟)和通信轮。探索各种参数对延迟的影响,我们寻求平衡无线通信(谈话)和本地计算之间的权衡(为工作)。我们与整体时间作为优化问题制定了关系,并通过广泛的模拟展示了我们方法的功效。
translated by 谷歌翻译
有限的通信资源,例如带宽和能源以及设备之间的数据异质性是联合学习的两个主要瓶颈(FL)。为了应对这些挑战,我们首先使用部分模型聚合(PMA)设计了一个新颖的FL框架,该框架仅汇总负责特征提取的神经网络的下层,而与复杂模式识别相对应的上层仍保留在个性化设备上。提出的PMA-FL能够解决数据异质性并减少无线通道中的传输信息。然后,我们在非convex损耗函数设置下获得了框架的收敛结合。借助此界限,我们定义了一个新的目标函数,名为“计划数据样本量”,以将原始的不明智优化问题转移到可用于设备调度,带宽分配,计算和通信时间分配的可拖动问题中。我们的分析表明,当PMA-FL的沟通和计算部分具有相同的功率时,可以实现最佳时段。我们还开发了一种二级方法来解决最佳带宽分配策略,并使用SET扩展算法来解决最佳设备调度。与最先进的基准测试相比,提议的PMA-FL在两个典型的异质数据集(即Minist和CIFAR-10)上提高了2.72%和11.6%的精度。此外,提出的联合动态设备调度和资源优化方法的精度比考虑的基准略高,但它们提供了令人满意的能量和时间缩短:MNIST的29%能量或20%的时间缩短; CIFAR-10的能量和25%的能量或12.5%的时间缩短。
translated by 谷歌翻译
通过具有资源约束设备的无线网络部署联合学习(FL)需要平衡精度,能量效率和精度之间。现有技术在FL上经常需要设备使用32位精度级别来培训深神经网络(DNN)以进行数据表示以提高精度。然而,由于DNN可能需要执行数百万运算,因此这些算法对于资源受限设备来说是不切实际的。因此,培训具有高精度水平的DNN,对FL的高能量成本引起。在本文中,提出了一种量化的FL框架,其表示在本地训练和上行链路传输中具有有限精度的有限精度的数据。这里,通过使用量化的神经网络(QNN)以固定精度格式量化的量化神经网络(QNN)来捕获有限的精度。在所考虑的流域中,每个设备列举其QNN并将量化的训练结果传输到基站。用于本地训练的能源模型和具有量化的传输经过严格导出。在确保收敛的同时,相对于精度的水平配制了能量最小化问题。为了解决问题,我们首先分析了流量收敛速度并使用了线路搜索方法。仿真结果表明,与标准FL模型相比,我们的FL框架可以将能耗降低至53%。结果在无线网络上的精度,能量和准确性之间的权衡之间还阐明了借调。
translated by 谷歌翻译
个性化联合学习(PFL)是一种新的联邦学习(FL)方法,可解决分布式用户设备(UES)生成的数据集的异质性问题。但是,大多数现有的PFL实现都依赖于同步培训来确保良好的收敛性能,这可能会导致严重的散乱问题,在这种情况下,训练时间大量延长了最慢的UE。为了解决这个问题,我们提出了一种半同步PFL算法,被称为半同步个性化的FederatedAveraging(Perfeds $^2 $),而不是移动边缘网络。通过共同优化无线带宽分配和UE调度策略,它不仅减轻了Straggler问题,而且还提供了收敛的培训损失保证。我们根据每回合的参与者数量和回合数量来得出Perfeds2收敛速率的上限。在此基础上,可以使用分析解决方案解决带宽分配问题,并且可以通过贪婪算法获得UE调度策略。实验结果与同步和异步PFL算法相比,验证了Perfeds2在节省训练时间和保证训练损失的收敛方面的有效性。
translated by 谷歌翻译
联合学习(FL)最近被揭示为有希望的技术,以便在网络边缘启用人工智能(AI),其中分布式移动设备在边缘服务器的协调下协同培训共享AI模型。为了显着提高FL的通信效率,通过利用无线多接入信道的叠加特性,遍布空中计算允许大量的移动设备通过利用无线多接入信道的叠加特性同时上传其本地模型。由于无线信道衰落,边缘服务器的模型聚合误差由所有设备中最弱的通道主导,导致严重的孤立问题。在本文中,我们提出了一种继电器协助的合作液计划,以有效地解决了斯塔格勒问题。特别是,我们部署了多个半双工继电器以协同协作在将本地模型更新上载到边缘服务器时的设备。空中计算的性质构成了与传统继电器通信系统中不同的系统目标和约束。此外,设计变量之间的强耦合使得这种系统具有挑战性的优化。为了解决问题,我们提出了一种基于交替优化的算法来优化收发器和中继操作,具有低复杂度。然后,我们在单个中继盒中分析模型聚合误差,并显示我们的继电器辅助方案实现比没有继电器的中继的误差较小的误差。该分析提供了对协同媒体实施中的继电器部署的关键见解。广泛的数值结果表明,与最先进的方案相比,我们的设计达到了更快的融合。
translated by 谷歌翻译
Federated Learning (FL) is a collaborative machine learning (ML) framework that combines on-device training and server-based aggregation to train a common ML model among distributed agents. In this work, we propose an asynchronous FL design with periodic aggregation to tackle the straggler issue in FL systems. Considering limited wireless communication resources, we investigate the effect of different scheduling policies and aggregation designs on the convergence performance. Driven by the importance of reducing the bias and variance of the aggregated model updates, we propose a scheduling policy that jointly considers the channel quality and training data representation of user devices. The effectiveness of our channel-aware data-importance-based scheduling policy, compared with state-of-the-art methods proposed for synchronous FL, is validated through simulations. Moreover, we show that an "age-aware" aggregation weighting design can significantly improve the learning performance in an asynchronous FL setting.
translated by 谷歌翻译
Federated learning (FL) is a key enabler for efficient communication and computing, leveraging devices' distributed computing capabilities. However, applying FL in practice is challenging due to the local devices' heterogeneous energy, wireless channel conditions, and non-independently and identically distributed (non-IID) data distributions. To cope with these issues, this paper proposes a novel learning framework by integrating FL and width-adjustable slimmable neural networks (SNN). Integrating FL with SNNs is challenging due to time-varying channel conditions and data distributions. In addition, existing multi-width SNN training algorithms are sensitive to the data distributions across devices, which makes SNN ill-suited for FL. Motivated by this, we propose a communication and energy-efficient SNN-based FL (named SlimFL) that jointly utilizes superposition coding (SC) for global model aggregation and superposition training (ST) for updating local models. By applying SC, SlimFL exchanges the superposition of multiple-width configurations decoded as many times as possible for a given communication throughput. Leveraging ST, SlimFL aligns the forward propagation of different width configurations while avoiding inter-width interference during backpropagation. We formally prove the convergence of SlimFL. The result reveals that SlimFL is not only communication-efficient but also deals with non-IID data distributions and poor channel conditions, which is also corroborated by data-intensive simulations.
translated by 谷歌翻译
随着数据和无线设备的爆炸性增长,联合学习(FL)已成为大型智能系统的有希望的技术。利用电磁波的模拟叠加,空中计算是一种吸引力的方法,以减少流量聚集中的通信负担。然而,随着对智能系统的迫切需求,具有超空气计算的多个任务的培训进一步加剧了通信资源的稀缺性。可以在一定程度上通过同时培训共享通信资源的多个任务来减轻此问题,但后者不可避免地带来任务间干扰的问题。在本文中,我们在多输入多输出(MIMO)干扰通道上使用空中多任务FL(OA-MTFL)。我们提出了一种新颖的模型聚集方法,用于对不同器件的局部梯度对准,这减轻了由于信道异质性而在空中计算中广泛存在的脱柱问题。通过考虑设备之间的空间相关性,为所提出的OA-MTFL方案建立统一的通信 - 计算分析框架,并制定设计收发器波束形成和设备选择的优化问题。我们通过使用交替优化(AO)和分数编程(FP)来开发算法来解决这个问题,这有效地缓解了任务间干扰对流程的影响。我们表明,由于使用新的模型聚合方法,设备选择对我们的方案不再是必不可少的,从而避免了通过实现设备选择引起的重大计算负担。数值结果证明了分析的正确性和所提出的计划的出色性能。
translated by 谷歌翻译
In recent years, mobile devices are equipped with increasingly advanced sensing and computing capabilities. Coupled with advancements in Deep Learning (DL), this opens up countless possibilities for meaningful applications, e.g., for medical purposes and in vehicular networks. Traditional cloudbased Machine Learning (ML) approaches require the data to be centralized in a cloud server or data center. However, this results in critical issues related to unacceptable latency and communication inefficiency. To this end, Mobile Edge Computing (MEC) has been proposed to bring intelligence closer to the edge, where data is produced. However, conventional enabling technologies for ML at mobile edge networks still require personal data to be shared with external parties, e.g., edge servers. Recently, in light of increasingly stringent data privacy legislations and growing privacy concerns, the concept of Federated Learning (FL) has been introduced. In FL, end devices use their local data to train an ML model required by the server. The end devices then send the model updates rather than raw data to the server for aggregation. FL can serve as an enabling technology in mobile edge networks since it enables the collaborative training of an ML model and also enables DL for mobile edge network optimization. However, in a large-scale and complex mobile edge network, heterogeneous devices with varying constraints are involved. This raises challenges of communication costs, resource allocation, and privacy and security in the implementation of FL at scale. In this survey, we begin with an introduction to the background and fundamentals of FL. Then, we highlight the aforementioned challenges of FL implementation and review existing solutions. Furthermore, we present the applications of FL for mobile edge network optimization. Finally, we discuss the important challenges and future research directions in FL.
translated by 谷歌翻译
在本章中,我们将主要关注跨无线设备的协作培训。培训ML模型相当于解决优化问题,并且在过去几十年中已经开发了许多分布式优化算法。这些分布式ML算法提供数据局部性;也就是说,可以协同地培训联合模型,而每个参与设备的数据仍然是本地的数据。这个地址,一些延伸,隐私问题。它们还提供计算可扩展性,因为它们允许利用分布在许多边缘设备的计算资源。然而,在实践中,这不会直接导致整体学习速度的线性增益与设备的数量。这部分是由于通信瓶颈限制了整体计算速度。另外,无线设备在其计算能力中具有高度异构,并且它们的计算速度和通信速率都可能由于物理因素而高度变化。因此,考虑到时变通信网络的影响以及器件的异构和随机计算能力,必须仔细设计分布式学习算法,特别是在无线网络边缘实现的算法。
translated by 谷歌翻译
边缘联合学习(FL)是一种新兴范式,它基于无线通信从分布式数据集中列出全局参数模型。本文提出了一个单位模量的空中计算(UMAircomp)框架,以便于高效的边缘联合学习,它同时通过模拟波束形成更新本地模型参数并更新全局模型参数。所提出的框架避免了复杂的基带信号处理,导致通信延迟和实现成本低。推导Umaircomp FL系统的培训损失界限,并提出了两个低复杂性大规模优化算法,称为惩罚交替最小化(PAM)和加速梯度投影(AGP),以最小化非凸起的非运动损耗绑定。仿真结果表明,与PAM算法的提议Umaircomp框架达到了模型参数估计,训练丢失和测试错误的较小均方误差。此外,具有AGP算法的提议Umaircomp框架实现了令人满意的性能,而与现有优化算法相比,通过幅度的序列降低了计算复杂性。最后,我们展示了Umaircomp在车辆到一般的自主驾驶仿真平台中的实现。发现自主驾驶任务对模型参数误差比其他任务更敏感,因为自主驱动的神经网络包含稀疏模型参数。
translated by 谷歌翻译
物联网(IoT)的扩散以及对设备进行感应,计算和通信功能的广泛使用,激发了人工智能增强的智能应用程序。经典人工智能算法需要集中的数据收集和处理,这些数据收集和处理在现实的智能物联网应用程序中,由于日益增长的数据隐私问题和分布式数据集。联合学习(FL)已成为一个分布式隐私的学习框架,该框架使IoT设备能够通过共享模型参数训练全局模型。但是,由于频繁的参数传输引起的效率低下会大大降低FL性能。现有的加速算法由两种主要类型组成,包括本地更新,考虑通信与计算之间的权衡以及参数压缩之间的权衡,考虑到通信和精度之间的权衡。共同考虑这两个权衡并适应平衡其对融合的影响尚未解决。为了解决该问题,本文提出了一种新型有效的自适应联合优化(EAFO)算法,以提高FL的效率,该算法通过共同考虑两个变量(包括本地更新和参数压缩)来最大程度地减少学习误差,并使FL能够自适应地调整两个变量和两个变量和两个变量。计算,沟通和精确度之间的平衡权衡。实验结果表明,与最先进的算法相比,提出的EAFO可以更快地实现更高的精度。
translated by 谷歌翻译