联合学习是指通过从多个客户端进行分散数据执行机器学习的任务,同时保护数据安全和隐私。在这种情况下,已经完成了将量子优势纳入量子优势的工作。但是,当客户的数据不是独立且分布相同(IID)时,常规联合算法的性能会恶化。在这项工作中,我们通过理论和数值分析探索了量子制度中的这种现象。我们进一步证明,在局部密度估计器的帮助下,可以将一个全局量子通道完全分解为由每个客户训练的通道。它导致一个通用框架,用于具有一声通信复杂性的非IID数据的量子联合学习。我们在使用数值模拟的分类任务上进行了演示。
translated by 谷歌翻译
我们介绍了一个新颖的联合学习框架FedD3,该框架减少了整体沟通量,并开放了联合学习的概念,从而在网络受限的环境中进行了更多的应用程序场景。它通过利用本地数据集蒸馏而不是传统的学习方法(i)大大减少沟通量,并(ii)将转移限制为一击通信,而不是迭代的多路交流来实现这一目标。 FedD3允许连接的客户独立提炼本地数据集,然后汇总那些去中心化的蒸馏数据集(通常以几个无法识别的图像,通常小于模型小于模型),而不是像其他联合学习方法共享模型更新,而是允许连接的客户独立提炼本地数据集。在整个网络上仅一次形成最终模型。我们的实验结果表明,FedD3在所需的沟通量方面显着优于其他联合学习框架,同时,根据使用情况或目标数据集,它为能够在准确性和沟通成本之间的权衡平衡。例如,要在具有10个客户的非IID CIFAR-10数据集上训练Alexnet模型,FedD3可以通过相似的通信量增加准确性超过71%,或者节省98%的通信量,同时达到相同的准确性与其他联合学习方法相比。
translated by 谷歌翻译
联合学习可以使资源受限的边缘计算设备(例如手机和物联网设备)学习一个共享模型以进行预测,同时保持培训数据本地。这种分散的火车模型方法可提供隐私,安全,监管和经济利益。在这项工作中,我们关注联合学习的统计挑战,当时本地数据是非IID的。我们首先表明,联合学习的准确性大大降低了,对于接受高度偏斜的非IID数据训练的神经网络,最多可降低55%,其中每个客户端设备仅在一类数据上训练。我们进一步表明,可以通过重量差异来解释这种准确性的降低,这可以通过每个设备上类和种群分布的类别的分布之间的地球搬运工距离(EMD)来量化。作为解决方案,我们提出了一种策略,通过创建一小部分数据来改善对非IID数据的培训,该数据在所有边缘设备之间全球共享。实验表明,CIFAR-10数据集只有5%全球共享数据,可以提高精度30%。
translated by 谷歌翻译
联合学习是一种在不违反隐私限制的情况下对分布式数据集进行统计模型培训统计模型的最新方法。通过共享模型而不是客户和服务器之间的数据来保留数据位置原则。这带来了许多优势,但也带来了新的挑战。在本报告中,我们探讨了这个新的研究领域,并执行了几项实验,以加深我们对这些挑战的理解以及不同的问题设置如何影响最终模型的性能。最后,我们为这些挑战之一提供了一种新颖的方法,并将其与文献中的其他方法进行了比较。
translated by 谷歌翻译
With the development and progress of science and technology, the Internet of Things(IoT) has gradually entered people's lives, bringing great convenience to our lives and improving people's work efficiency. Specifically, the IoT can replace humans in jobs that they cannot perform. As a new type of IoT vehicle, the current status and trend of research on Unmanned Aerial Vehicle(UAV) is gratifying, and the development prospect is very promising. However, privacy and communication are still very serious issues in drone applications. This is because most drones still use centralized cloud-based data processing, which may lead to leakage of data collected by drones. At the same time, the large amount of data collected by drones may incur greater communication overhead when transferred to the cloud. Federated learning as a means of privacy protection can effectively solve the above two problems. However, federated learning when applied to UAV networks also needs to consider the heterogeneity of data, which is caused by regional differences in UAV regulation. In response, this paper proposes a new algorithm FedBA to optimize the global model and solves the data heterogeneity problem. In addition, we apply the algorithm to some real datasets, and the experimental results show that the algorithm outperforms other algorithms and improves the accuracy of the local model for UAVs.
translated by 谷歌翻译
联合学习(FL)框架使Edge客户能够协作学习共享的推理模型,同时保留对客户的培训数据的隐私。最近,已经采取了许多启发式方法来概括集中化的自适应优化方法,例如SGDM,Adam,Adagrad等,以提高收敛性和准确性的联合设置。但是,关于在联合设置中的位置以及如何设计和利用自适应优化方法的理论原理仍然很少。这项工作旨在从普通微分方程(ODE)的动力学的角度开发新的自适应优化方法,以开发FL的新型自适应优化方法。首先,建立了一个分析框架,以在联合优化方法和相应集中优化器的ODES分解之间建立连接。其次,基于这个分析框架,开发了一种动量解耦自适应优化方法FedDA,以充分利用每种本地迭代的全球动量并加速训练收敛。最后但并非最不重要的一点是,在训练过程结束时,全部批处理梯度用于模仿集中式优化,以确保收敛并克服由自适应优化方法引起的可能的不一致。
translated by 谷歌翻译
Federated learning is a popular paradigm for machine learning. Ideally, federated learning works best when all clients share a similar data distribution. However, it is not always the case in the real world. Therefore, the topic of federated learning on heterogeneous data has gained more and more effort from both academia and industry. In this project, we first do extensive experiments to show how data skew and quantity skew will affect the performance of state-of-art federated learning algorithms. Then we propose a new algorithm FedMix which adjusts existing federated learning algorithms and we show its performance. We find that existing state-of-art algorithms such as FedProx and FedNova do not have a significant improvement in all testing cases. But by testing the existing and new algorithms, it seems that tweaking the client side is more effective than tweaking the server side.
translated by 谷歌翻译
联合学习(FL)是一种新兴技术,用于协作训练全球机器学习模型,同时将数据局限于用户设备。FL实施实施的主要障碍是用户之间的非独立且相同的(非IID)数据分布,这会减慢收敛性和降低性能。为了解决这个基本问题,我们提出了一种方法(comfed),以增强客户端和服务器侧的整个培训过程。舒适的关键思想是同时利用客户端变量减少技术来促进服务器聚合和全局自适应更新技术以加速学习。我们在CIFAR-10分类任务上的实验表明,Comfed可以改善专用于非IID数据的最新算法。
translated by 谷歌翻译
联合学习允许多方协作,在不共享本地数据的情况下协作培训联合模型。这使得机器学习在固有的分布式的,诸如医疗领域中的固有分布式的未差异数据的设置中的应用。在实践中,通常通过聚合当地模型来实现联合培训,其中当地培训目标必须与联合(全球)目标相似。然而,通常,当地数据集是如此之小,即当地目标从全球目标差异很大,导致联合学习失败。我们提出了一种新的方法,它与本地模型的排列交织在一起。排列将每个本地模型暴露给当地数据集的菊花链,导致数据稀疏域中的更有效培训。这使得能够培训极小的本地数据集,例如跨医院的患者数据,同时保留联合学习的培训效率和隐私效益。
translated by 谷歌翻译
在联合学习(FL)中的客户端的异质性通常会在梯度空间中发生客户的知识聚合时阻碍优化融合和泛化性能。例如,客户端可以在数据分发,网络延迟,输入/输出空间和/或模型架构方面不同,这可以很容易地导致其本地梯度的未对准。为了提高异质性的容忍度,我们提出了一种新的联合原型学习(FedProto)框架,其中客户端和服务器传达了抽象类原型而不是梯度。 FEDPROTO聚合从不同客户端收集的本地原型,然后将全局原型发送回所有客户端,以规范本地模型的培训。每个客户端的训练旨在最大限度地减少本地数据上的分类错误,同时保持所产生的本地原型靠近相应的全球范围。此外,我们在非凸起目标下对FedProto的收敛速度提供了理论分析。在实验中,我们提出了一种针对异构FL定制的基准设置,FEDPROTO优于多个数据集上的几种方法。
translated by 谷歌翻译
联合学习是一种分布式的机器学习方法,其中单个服务器和多个客户端在不共享客户端数据集的情况下协作构建机器学习模型。联合学习的一个具有挑战性的问题是数据异质性(即,数据分布在客户端可能有所不同)。为了应对这个问题,众多联合学习方法旨在为客户提供个性化的联合学习,并为客户建立优化的模型。尽管现有研究通过经验评估了自己的方法,但这些研究中的实验环境(例如比较方法,数据集和客户设置)彼此不同,目前尚不清楚哪种个性化的联邦学习方法可以实现最佳性能,以及取得多少进展,可以进行多大进展。通过使用这些方法而不是标准(即非个人化)联合学习来制作。在本文中,我们通过全面的实验基准了现有的个性化联合学习的性能,以评估每种方法的特征。我们的实验研究表明,(1)没有冠军方法,(2)大数据异质性通常会导致高准确的预测,并且(3)具有微调的标准联合学习方法(例如FedAvg)通常超过了个性化的联邦学习方法。我们为研究人员开放基准工具FedBench,以通过各种实验环境进行实验研究。
translated by 谷歌翻译
Modern mobile devices have access to a wealth of data suitable for learning models, which in turn can greatly improve the user experience on the device. For example, language models can improve speech recognition and text entry, and image models can automatically select good photos. However, this rich data is often privacy sensitive, large in quantity, or both, which may preclude logging to the data center and training there using conventional approaches. We advocate an alternative that leaves the training data distributed on the mobile devices, and learns a shared model by aggregating locally-computed updates. We term this decentralized approach Federated Learning.We present a practical method for the federated learning of deep networks based on iterative model averaging, and conduct an extensive empirical evaluation, considering five different model architectures and four datasets. These experiments demonstrate the approach is robust to the unbalanced and non-IID data distributions that are a defining characteristic of this setting. Communication costs are the principal constraint, and we show a reduction in required communication rounds by 10-100× as compared to synchronized stochastic gradient descent.
translated by 谷歌翻译
将知识蒸馏应用于个性化的跨筒仓联合学习,可以很好地减轻用户异质性的问题。然而,这种方法需要一个代理数据集,这很难在现实世界中获得。此外,基于参数平均的全球模型将导致用户隐私的泄漏。我们介绍了一个分布式的三位玩家GaN来实现客户之间的DataFree共蒸馏。该技术减轻了用户异质性问题,更好地保护用户隐私。我们证实,GaN产生的方法可以使联合蒸馏更有效和稳健,并且在获得全球知识的基础上,共蒸馏可以为各个客户达到良好的性能。我们对基准数据集的广泛实验证明了与最先进的方法的卓越的泛化性能。
translated by 谷歌翻译
The statistical heterogeneity of the non-independent and identically distributed (non-IID) data in local clients significantly limits the performance of federated learning. Previous attempts like FedProx, SCAFFOLD, MOON, FedNova and FedDyn resort to an optimization perspective, which requires an auxiliary term or re-weights local updates to calibrate the learning bias or the objective inconsistency. However, in addition to previous explorations for improvement in federated averaging, our analysis shows that another critical bottleneck is the poorer optima of client models in more heterogeneous conditions. We thus introduce a data-driven approach called FedSkip to improve the client optima by periodically skipping federated averaging and scattering local models to the cross devices. We provide theoretical analysis of the possible benefit from FedSkip and conduct extensive experiments on a range of datasets to demonstrate that FedSkip achieves much higher accuracy, better aggregation efficiency and competing communication efficiency. Source code is available at: https://github.com/MediaBrain-SJTU/FedSkip.
translated by 谷歌翻译
联合学习的重要问题之一是如何处理不平衡的数据。该贡献引入了一种新型技术,旨在使用I-FGSM方法创建的对抗输入来处理标签偏斜的非IID数据。对抗输入指导培训过程,并允许加权联合的平均值,以更重要的是具有“选定”本地标签分布的客户。报告并分析了从图像分类任务,用于MNIST和CIFAR-10数据集的实验结果。
translated by 谷歌翻译
我们研究了在联合环境中从积极和未标记的(PU)数据中学习的问题,由于资源和时间的限制,每个客户仅标记其数据集的一小部分。与传统的PU学习中的设置不同,负面类是由单个类组成的,而由客户在联合设置中无法识别的否定样本可能来自客户未知的多个类。因此,在这种情况下,几乎无法应用现有的PU学习方法。为了解决这个问题,我们提出了一个新颖的框架,即使用正面和未标记的数据(FEDPU)联合学习,以通过利用其他客户的标记数据来最大程度地降低多个负面类别的预期风险。我们理论上分析了拟议的FedPU的概括结合。经验实验表明,FedPU比常规监督和半监督联盟的学习方法取得更好的性能。
translated by 谷歌翻译
由于参与客户的异构特征,联邦学习往往受到不稳定和缓慢的收敛。当客户参与比率低时,这种趋势加剧了,因为从每个轮的客户收集的信息容易更加不一致。为了解决挑战,我们提出了一种新的联合学习框架,这提高了服务器端聚合步骤的稳定性,这是通过将客户端发送与全局梯度估计的加速模型来引导本地梯度更新来实现的。我们的算法自然地聚合并将全局更新信息与没有额外的通信成本的参与者传达,并且不需要将过去的模型存储在客户端中。我们还规范了本地更新,以进一步降低偏差并提高本地更新的稳定性。我们根据各种设置执行了关于实际数据的全面实证研究,与最先进的方法相比,在准确性和通信效率方面表现出了拟议方法的显着性能,特别是具有低客户参与率。我们的代码可在https://github.com/ninigapa0 / fedagm获得
translated by 谷歌翻译
Data heterogeneity across clients is a key challenge in federated learning. Prior works address this by either aligning client and server models or using control variates to correct client model drift. Although these methods achieve fast convergence in convex or simple non-convex problems, the performance in over-parameterized models such as deep neural networks is lacking. In this paper, we first revisit the widely used FedAvg algorithm in a deep neural network to understand how data heterogeneity influences the gradient updates across the neural network layers. We observe that while the feature extraction layers are learned efficiently by FedAvg, the substantial diversity of the final classification layers across clients impedes the performance. Motivated by this, we propose to correct model drift by variance reduction only on the final layers. We demonstrate that this significantly outperforms existing benchmarks at a similar or lower communication cost. We furthermore provide proof for the convergence rate of our algorithm.
translated by 谷歌翻译
Federated Learning allows multiple parties to jointly train a deep learning model on their combined data, without any of the participants having to reveal their local data to a centralized server. This form of privacy-preserving collaborative learning however comes at the cost of a significant communication overhead during training. To address this problem, several compression methods have been proposed in the distributed training literature that can reduce the amount of required communication by up to three orders of magnitude. These existing methods however are only of limited utility in the Federated Learning setting, as they either only compress the upstream communication from the clients to the server (leaving the downstream communication uncompressed) or only perform well under idealized conditions such as iid distribution of the client data, which typically can not be found in Federated Learning. In this work, we propose Sparse Ternary Compression (STC), a new compression framework that is specifically designed to meet the requirements of the Federated Learning environment. STC extends the existing compression technique of top-k gradient sparsification with a novel mechanism to enable downstream compression as well as ternarization and optimal Golomb encoding of the weight updates. Our experiments on four different learning tasks demonstrate that STC distinctively outperforms Federated Averaging in common Federated Learning scenarios where clients either a) hold non-iid data, b) use small batch sizes during training, or where c) the number of clients is large and the participation rate in every communication round is low. We furthermore show that even if the clients hold iid data and use medium sized batches for training, STC still behaves paretosuperior to Federated Averaging in the sense that it achieves fixed target accuracies on our benchmarks within both fewer training iterations and a smaller communication budget. These results advocate for a paradigm shift in Federated optimization towards high-frequency low-bitwidth communication, in particular in bandwidth-constrained learning environments.
translated by 谷歌翻译
联合学习(FL)是一种保护隐私的范式,其中多个参与者共同解决机器学习问题而无需共享原始数据。与传统的分布式学习不同,FL的独特特征是统计异质性,即,跨参与者的数据分布彼此不同。同时,神经网络解释的最新进展已广泛使用神经切线核(NTK)进行收敛分析。在本文中,我们提出了一个新颖的FL范式,该范式由NTK框架赋予了能力。该范式通过传输比常规FL范式更具表现力的更新数据来解决统计异质性的挑战。具体而言,通过样本的雅各布矩阵,而不是模型的权重/梯度,由参与者上传。然后,服务器构建了经验内核矩阵,以更新全局模型,而无需明确执行梯度下降。我们进一步开发了一种具有提高沟通效率和增强隐私性的变体。数值结果表明,与联邦平均相比,所提出的范式可以达到相同的精度,同时将通信弹的数量减少数量级。
translated by 谷歌翻译