Federated learning (FL) is a key enabler for efficient communication and computing, leveraging devices' distributed computing capabilities. However, applying FL in practice is challenging due to the local devices' heterogeneous energy, wireless channel conditions, and non-independently and identically distributed (non-IID) data distributions. To cope with these issues, this paper proposes a novel learning framework by integrating FL and width-adjustable slimmable neural networks (SNN). Integrating FL with SNNs is challenging due to time-varying channel conditions and data distributions. In addition, existing multi-width SNN training algorithms are sensitive to the data distributions across devices, which makes SNN ill-suited for FL. Motivated by this, we propose a communication and energy-efficient SNN-based FL (named SlimFL) that jointly utilizes superposition coding (SC) for global model aggregation and superposition training (ST) for updating local models. By applying SC, SlimFL exchanges the superposition of multiple-width configurations decoded as many times as possible for a given communication throughput. Leveraging ST, SlimFL aligns the forward propagation of different width configurations while avoiding inter-width interference during backpropagation. We formally prove the convergence of SlimFL. The result reveals that SlimFL is not only communication-efficient but also deals with non-IID data distributions and poor channel conditions, which is also corroborated by data-intensive simulations.
translated by 谷歌翻译
本文旨在整合两个协同技术,联合学习(FL)和宽度可调的可泥质网络(SNN)架构。通过交换当地培训的移动设备模型来保留数据隐私。通过采用SNNS作为本地模型,FL可以灵活地应对移动设备的时变能容量。然而,结合FL和SNN是非琐碎的,特别是在与时变通道条件的无线连接下。此外,现有的多宽SNN训练算法对跨设备的数据分布敏感,因此不适用于FL。由此激励,我们提出了一种通信和节能SNN的FL(命名SLIMFL),共同利用叠加编码(SC)进行全局模型聚合和叠加训练(ST),以更新本地模型。通过施加SC,SLIMFL交换多个宽度配置的叠加,这对于给定的通信吞吐量尽可能多地解码。利用ST,SLIMFL对准不同宽度配置的前向传播,同时避免在背部衰退期间的横宽干扰。我们正式证明了Slimfl的融合。结果表明,SLIMFL不仅是通信的,而且可以抵消非IID数据分布和差的信道条件,这也被模拟证实。
translated by 谷歌翻译
移动设备是大数据的不可或缺的来源。联合学习(FL)通过交换本地培训的模型而不是其原始数据来利用这些私人数据具有很大的潜力。然而,移动设备通常是能量有限且无线连接的,并且FL不能灵活地应对它们的异构和时变的能量容量和通信吞吐量,限制采用。通过这些问题,我们提出了一种新颖的能源和通信有效的流动框架,被创造的Slimfl。为了解决异构能量容量问题,SLIMFL中的每个设备都运行宽度可调可泥瓦神经网络(SNN)。为了解决异构通信吞吐量问题,每个全宽(1.0倍)SNN模型及其半宽度(0.5美元$ x)模型在传输之前是叠加编码的,并且在接收后连续解码为0.5x或1.0美元$ 1.0 $ x模型取决于频道质量。仿真结果表明,SLIMFL可以通过合理的精度和收敛速度同时培养0.5美元和1.0美元的X模型,而是使用2美元的通信资源分别培训这两种型号。令人惊讶的是,SLIMFL甚至具有比Vanilla FL的较低的能量占地面积更高的精度,对于较差的通道和非IID数据分布,Vanilla Fl会缓慢收敛。
translated by 谷歌翻译
While witnessing the noisy intermediate-scale quantum (NISQ) era and beyond, quantum federated learning (QFL) has recently become an emerging field of study. In QFL, each quantum computer or device locally trains its quantum neural network (QNN) with trainable gates, and communicates only these gate parameters over classical channels, without costly quantum communications. Towards enabling QFL under various channel conditions, in this article we develop a depth-controllable architecture of entangled slimmable quantum neural networks (eSQNNs), and propose an entangled slimmable QFL (eSQFL) that communicates the superposition-coded parameters of eS-QNNs. Compared to the existing depth-fixed QNNs, training the depth-controllable eSQNN architecture is more challenging due to high entanglement entropy and inter-depth interference, which are mitigated by introducing entanglement controlled universal (CU) gates and an inplace fidelity distillation (IPFD) regularizer penalizing inter-depth quantum state differences, respectively. Furthermore, we optimize the superposition coding power allocation by deriving and minimizing the convergence bound of eSQFL. In an image classification task, extensive simulations corroborate the effectiveness of eSQFL in terms of prediction accuracy, fidelity, and entropy compared to Vanilla QFL as well as under different channel conditions and various data distributions.
translated by 谷歌翻译
联合学习(FL)使移动设备能够在保留本地数据的同时协作学习共享的预测模型。但是,实际上在移动设备上部署FL存在两个主要的研究挑战:(i)频繁的无线梯度更新v.s.频谱资源有限,以及(ii)培训期间渴望的FL通信和本地计算V.S.电池约束的移动设备。为了应对这些挑战,在本文中,我们提出了一种新型的多位空天空计算(MAIRCOMP)方法,用于FL中本地模型更新的频谱有效聚合,并进一步介绍用于移动的能源有效的FL设计设备。具体而言,高精度数字调制方案是在MAIRCOMP中设计和合并的,允许移动设备同时在多访问通道中同时在所选位置上传模型更新。此外,我们理论上分析了FL算法的收敛性。在FL收敛分析的指导下,我们制定了联合传输概率和局部计算控制优化,旨在最大程度地减少FL移动设备的总体能源消耗(即迭代局部计算 +多轮通信)。广泛的仿真结果表明,我们提出的方案在频谱利用率,能源效率和学习准确性方面优于现有计划。
translated by 谷歌翻译
随着数据生成越来越多地在没有连接连接的设备上进行,因此与机器学习(ML)相关的流量将在无线网络中无处不在。许多研究表明,传统的无线协议高效或不可持续以支持ML,这创造了对新的无线通信方法的需求。在这项调查中,我们对最先进的无线方法进行了详尽的审查,这些方法是专门设计用于支持分布式数据集的ML服务的。当前,文献中有两个明确的主题,模拟的无线计算和针对ML优化的数字无线电资源管理。这项调查对这些方法进行了全面的介绍,回顾了最重要的作品,突出了开放问题并讨论了应用程序方案。
translated by 谷歌翻译
Federated Learning (FL) is a collaborative machine learning (ML) framework that combines on-device training and server-based aggregation to train a common ML model among distributed agents. In this work, we propose an asynchronous FL design with periodic aggregation to tackle the straggler issue in FL systems. Considering limited wireless communication resources, we investigate the effect of different scheduling policies and aggregation designs on the convergence performance. Driven by the importance of reducing the bias and variance of the aggregated model updates, we propose a scheduling policy that jointly considers the channel quality and training data representation of user devices. The effectiveness of our channel-aware data-importance-based scheduling policy, compared with state-of-the-art methods proposed for synchronous FL, is validated through simulations. Moreover, we show that an "age-aware" aggregation weighting design can significantly improve the learning performance in an asynchronous FL setting.
translated by 谷歌翻译
有限的通信资源,例如带宽和能源以及设备之间的数据异质性是联合学习的两个主要瓶颈(FL)。为了应对这些挑战,我们首先使用部分模型聚合(PMA)设计了一个新颖的FL框架,该框架仅汇总负责特征提取的神经网络的下层,而与复杂模式识别相对应的上层仍保留在个性化设备上。提出的PMA-FL能够解决数据异质性并减少无线通道中的传输信息。然后,我们在非convex损耗函数设置下获得了框架的收敛结合。借助此界限,我们定义了一个新的目标函数,名为“计划数据样本量”,以将原始的不明智优化问题转移到可用于设备调度,带宽分配,计算和通信时间分配的可拖动问题中。我们的分析表明,当PMA-FL的沟通和计算部分具有相同的功率时,可以实现最佳时段。我们还开发了一种二级方法来解决最佳带宽分配策略,并使用SET扩展算法来解决最佳设备调度。与最先进的基准测试相比,提议的PMA-FL在两个典型的异质数据集(即Minist和CIFAR-10)上提高了2.72%和11.6%的精度。此外,提出的联合动态设备调度和资源优化方法的精度比考虑的基准略高,但它们提供了令人满意的能量和时间缩短:MNIST的29%能量或20%的时间缩短; CIFAR-10的能量和25%的能量或12.5%的时间缩短。
translated by 谷歌翻译
联合学习(FL)最近被揭示为有希望的技术,以便在网络边缘启用人工智能(AI),其中分布式移动设备在边缘服务器的协调下协同培训共享AI模型。为了显着提高FL的通信效率,通过利用无线多接入信道的叠加特性,遍布空中计算允许大量的移动设备通过利用无线多接入信道的叠加特性同时上传其本地模型。由于无线信道衰落,边缘服务器的模型聚合误差由所有设备中最弱的通道主导,导致严重的孤立问题。在本文中,我们提出了一种继电器协助的合作液计划,以有效地解决了斯塔格勒问题。特别是,我们部署了多个半双工继电器以协同协作在将本地模型更新上载到边缘服务器时的设备。空中计算的性质构成了与传统继电器通信系统中不同的系统目标和约束。此外,设计变量之间的强耦合使得这种系统具有挑战性的优化。为了解决问题,我们提出了一种基于交替优化的算法来优化收发器和中继操作,具有低复杂度。然后,我们在单个中继盒中分析模型聚合误差,并显示我们的继电器辅助方案实现比没有继电器的中继的误差较小的误差。该分析提供了对协同媒体实施中的继电器部署的关键见解。广泛的数值结果表明,与最先进的方案相比,我们的设计达到了更快的融合。
translated by 谷歌翻译
当上行链路和下行链路通信都有错误时联合学习(FL)工作吗?通信噪音可以处理多少,其对学习性能的影响是什么?这项工作致力于通过明确地纳入流水线中的上行链路和下行链路嘈杂的信道来回答这些实际重要的问题。我们在同时上行链路和下行链路嘈杂通信通道上提供了多种新的融合分析,其包括完整和部分客户端参与,直接模型和模型差分传输,以及非独立和相同分布的(IID)本地数据集。这些分析表征了嘈杂通道的流动条件,使其具有与无通信错误的理想情况相同的融合行为。更具体地,为了保持FEDAVG的O(1 / T)具有完美通信的O(1 / T)收敛速率,应控制用于直接模型传输的上行链路和下行链路信噪比(SNR),使得它们被缩放为O(t ^ 2)其中T是通信轮的索引,但可以保持常量的模型差分传输。这些理论结果的关键洞察力是“雷达下的飞行”原则 - 随机梯度下降(SGD)是一个固有的噪声过程,并且可以容忍上行链路/下行链路通信噪声,只要它们不占据时变的SGD噪声即可。我们举例说明了具有两种广泛采用的通信技术 - 传输功率控制和多样性组合的这些理论发现 - 并通过使用多个真实世界流动任务的广泛数值实验进一步通过标准方法验证它们的性能优势。
translated by 谷歌翻译
联合学习(FL)是一种新颖的学习范式,可解决集中学习的隐私泄漏挑战。但是,在FL中,具有非独立和相同分布(非IID)特征的用户可能会恶化全局模型的性能。具体而言,由于非IID数据,全局模型受到权重差异的挑战。为了应对上述挑战,我们提出了机器学习(ML)模型(FIDDIF)的新型扩散策略,以通过非IID数据最大化FL性能。在FedDif中,用户通过D2D通信将本地模型传播给相邻用户。 FedDif使本地模型能够在参数聚合之前体验不同的分布。此外,从理论上讲,我们证明了FedDif可以规避体重差异挑战。在理论的基础上,我们提出了ML模型的沟通效率扩散策略,该策略可以决定基于拍卖理论的学习绩效和沟通成本之间的权衡。绩效评估结果表明,与非IID设置相比,FedDIF将全球模型的测试准确性提高了11%。此外,与最新方法相比
translated by 谷歌翻译
In recent years, mobile devices are equipped with increasingly advanced sensing and computing capabilities. Coupled with advancements in Deep Learning (DL), this opens up countless possibilities for meaningful applications, e.g., for medical purposes and in vehicular networks. Traditional cloudbased Machine Learning (ML) approaches require the data to be centralized in a cloud server or data center. However, this results in critical issues related to unacceptable latency and communication inefficiency. To this end, Mobile Edge Computing (MEC) has been proposed to bring intelligence closer to the edge, where data is produced. However, conventional enabling technologies for ML at mobile edge networks still require personal data to be shared with external parties, e.g., edge servers. Recently, in light of increasingly stringent data privacy legislations and growing privacy concerns, the concept of Federated Learning (FL) has been introduced. In FL, end devices use their local data to train an ML model required by the server. The end devices then send the model updates rather than raw data to the server for aggregation. FL can serve as an enabling technology in mobile edge networks since it enables the collaborative training of an ML model and also enables DL for mobile edge network optimization. However, in a large-scale and complex mobile edge network, heterogeneous devices with varying constraints are involved. This raises challenges of communication costs, resource allocation, and privacy and security in the implementation of FL at scale. In this survey, we begin with an introduction to the background and fundamentals of FL. Then, we highlight the aforementioned challenges of FL implementation and review existing solutions. Furthermore, we present the applications of FL for mobile edge network optimization. Finally, we discuss the important challenges and future research directions in FL.
translated by 谷歌翻译
通过增加无线设备的计算能力,以及用户和设备生成的数据的前所未有的级别,已经出现了新的分布式机器学习(ML)方法。在无线社区中,由于其通信效率及其处理非IID数据问题的能力,联邦学习(FL)特别有趣。可以通过称为空中计算(AIRCOMP)的无线通信方法加速FL训练,其利用同时上行链路传输的干扰以有效地聚合模型更新。但是,由于Aircomp利用模拟通信,因此它引入了不可避免的估计错误。在本文中,我们研究了这种估计误差对FL的收敛性的影响,并提出了一种改进资源受限无线网络的方法的转移。首先,我们通过静态通道重新传输获得最佳Aircomp电源控制方案。然后,我们调查了传递的空中流体的性能,并在流失函数上找到两个上限。最后,我们提出了一种选择最佳重传的启发式,可以在训练ML模型之前计算。数值结果表明,引入重传可能导致ML性能提高,而不会在通信或计算方面产生额外的成本。此外,我们为我们的启发式提供了模拟结果,表明它可以正确地确定不同无线网络设置和机器学习问题的最佳重传次数。
translated by 谷歌翻译
量子联合学习(QFL)最近受到了越来越多的关注,其中量子神经网络(QNN)集成到联邦学习(FL)中。与现有的静态QFL方法相反,我们在本文中提出了可靠的QFL(SLIMQFL),这是一个动态QFL框架,可以应对时变的通信通道和计算能量限制。通过利用QNN的独特性质,可以分别训练并动态利用其角度参数,从而使其可行。模拟结果证实了SLIMQFL比香草QFL更高的分类精度,尤其是在较差的通道条件下。
translated by 谷歌翻译
联合学习(FL)能够通过定期聚合培训的本地参数来在多个边缘用户执行大的分布式机器学习任务。为了解决在无线迷雾云系统上实现支持的关键挑战(例如,非IID数据,用户异质性),我们首先基于联合平均(称为FedFog)的高效流行算法来执行梯度参数的本地聚合在云端的FOG服务器和全球培训更新。接下来,我们通过调查新的网络知识的流动系统,在无线雾云系统中雇用FEDFog,这促使了全局损失和完成时间之间的平衡。然后开发了一种迭代算法以获得系统性能的精确测量,这有助于设计有效的停止标准以输出适当数量的全局轮次。为了缓解级体效果,我们提出了一种灵活的用户聚合策略,可以先培训快速用户在允许慢速用户加入全局培训更新之前获得一定程度的准确性。提供了使用若干现实世界流行任务的广泛数值结果来验证FEDFOG的理论融合。我们还表明,拟议的FL和通信的共同设计对于在实现学习模型的可比准确性的同时,基本上提高资源利用是必要的。
translated by 谷歌翻译
联邦边缘学习(诱导)吸引了许多隐私范例的关注,以有效地纳入网络边缘的分布式数据来训练深度学习模型。然而,单个边缘服务器的有限覆盖范围导致参与者的客户节点数量不足,这可能会损害学习性能。在本文中,我们调查了一种新颖的感觉框架,即半分散的联邦边缘学习(SD-INES),其中采用多个边缘服务器集体协调大量客户端节点。通过利用边缘服务器之间的低延迟通信进行高效的模型共享,SD-Feels可以包含更多的培训数据,同时与传统联合学习相比享受更低的延迟。我们详细介绍了三个主要步骤的SD感觉的培训算法,包括本地模型更新,群集内部和群集间模型聚合。在非独立和相同分布的(非IID)数据上证明了该算法的收敛性,这也有助于揭示关键参数对培训效率的影响,并提供实用的设计指南。同时,边缘装置的异质性可能导致级体效应并降低SD感应的收敛速度。为了解决这个问题,我们提出了一种具有SD-Iave的稳定性舒长方案的异步训练算法,其中,还分析了收敛性能。模拟结果展示了所提出的SD感觉和证实我们分析的算法的有效性和效率。
translated by 谷歌翻译
联邦元学习(FML)已成为应对当今边缘学习竞技场中的数据限制和异质性挑战的承诺范式。然而,其性能通常受到缓慢的收敛性和相应的低通信效率的限制。此外,由于可用的无线电频谱和物联网设备的能量容量通常不足,因此在在实际无线网络中部署FML时,控制资源分配和能量消耗是至关重要的。为了克服挑战,在本文中,我们严格地分析了每个设备对每轮全球损失减少的贡献,并使用非统一的设备选择方案开发FML算法(称为Nufm)以加速收敛。之后,我们制定了集成NuFM在多通道无线系统中的资源分配问题,共同提高收敛速率并最小化壁钟时间以及能量成本。通过逐步解构原始问题,我们设计了一个联合设备选择和资源分配策略,以解决理论保证问题。此外,我们表明Nufm的计算复杂性可以通过$ O(d ^ 2)$至$ o(d)$(使用模型维度$ d $)通过组合两个一阶近似技术来降低。广泛的仿真结果表明,与现有基线相比,所提出的方法的有效性和优越性。
translated by 谷歌翻译
Federated learning (FL) has achieved great success as a privacy-preserving distributed training paradigm, where many edge devices collaboratively train a machine learning model by sharing the model updates instead of the raw data with a server. However, the heterogeneous computational and communication resources of edge devices give rise to stragglers that significantly decelerate the training process. To mitigate this issue, we propose a novel FL framework named stochastic coded federated learning (SCFL) that leverages coded computing techniques. In SCFL, before the training process starts, each edge device uploads a privacy-preserving coded dataset to the server, which is generated by adding Gaussian noise to the projected local dataset. During training, the server computes gradients on the global coded dataset to compensate for the missing model updates of the straggling devices. We design a gradient aggregation scheme to ensure that the aggregated model update is an unbiased estimate of the desired global update. Moreover, this aggregation scheme enables periodical model averaging to improve the training efficiency. We characterize the tradeoff between the convergence performance and privacy guarantee of SCFL. In particular, a more noisy coded dataset provides stronger privacy protection for edge devices but results in learning performance degradation. We further develop a contract-based incentive mechanism to coordinate such a conflict. The simulation results show that SCFL learns a better model within the given time and achieves a better privacy-performance tradeoff than the baseline methods. In addition, the proposed incentive mechanism grants better training performance than the conventional Stackelberg game approach.
translated by 谷歌翻译
随着数据和无线设备的爆炸性增长,联合学习(FL)已成为大型智能系统的有希望的技术。利用电磁波的模拟叠加,空中计算是一种吸引力的方法,以减少流量聚集中的通信负担。然而,随着对智能系统的迫切需求,具有超空气计算的多个任务的培训进一步加剧了通信资源的稀缺性。可以在一定程度上通过同时培训共享通信资源的多个任务来减轻此问题,但后者不可避免地带来任务间干扰的问题。在本文中,我们在多输入多输出(MIMO)干扰通道上使用空中多任务FL(OA-MTFL)。我们提出了一种新颖的模型聚集方法,用于对不同器件的局部梯度对准,这减轻了由于信道异质性而在空中计算中广泛存在的脱柱问题。通过考虑设备之间的空间相关性,为所提出的OA-MTFL方案建立统一的通信 - 计算分析框架,并制定设计收发器波束形成和设备选择的优化问题。我们通过使用交替优化(AO)和分数编程(FP)来开发算法来解决这个问题,这有效地缓解了任务间干扰对流程的影响。我们表明,由于使用新的模型聚合方法,设备选择对我们的方案不再是必不可少的,从而避免了通过实现设备选择引起的重大计算负担。数值结果证明了分析的正确性和所提出的计划的出色性能。
translated by 谷歌翻译
联合学习(FL)可以培训全球模型,而无需共享存储在多个设备上的分散的原始数据以保护数据隐私。由于设备的能力多样化,FL框架难以解决Straggler效应和过时模型的问题。此外,数据异质性在FL训练过程中会导致全球模型的严重准确性降解。为了解决上述问题,我们提出了一个层次同步FL框架,即Fedhisyn。 Fedhisyn首先根据其计算能力将所有可​​用的设备簇分为少数类别。经过一定的本地培训间隔后,将不同类别培训的模型同时上传到中央服务器。在单个类别中,设备根据环形拓扑会相互传达局部更新的模型权重。随着环形拓扑中训练的效率更喜欢具有均匀资源的设备,基于计算能力的分类减轻了Straggler效应的影响。此外,多个类别的同步更新与单个类别中的设备通信的组合有助于解决数据异质性问题,同时达到高精度。我们评估了基于MNIST,EMNIST,CIFAR10和CIFAR100数据集的提议框架以及设备的不同异质设置。实验结果表明,在训练准确性和效率方面,Fedhisyn的表现优于六种基线方法,例如FedAvg,脚手架和Fedat。
translated by 谷歌翻译