对意外突发事件的有效和及时的响应对于提高电网的恢复性至关重要。考虑到级联传播的快速,复杂过程,由于计算复杂性和通信延迟问题,难以在大型网络中获得校正动作,例如最佳负载脱落(OLS)。这项工作通过在通过离线神经网络(NN)培训下,通过在各种潜在的应变场景下构建负载脱落的最佳决策规则来提出创新的学习措施方法。值得注意的是,所提出的基于NN的OLS决策是完全分散的,使单独的负载中心能够使用易于获得的局部测量来快速地对特定的应变作出反应。IEEE 14总线系统的数值研究表明了我们可扩展的OLS设计的有效性,用于对严格的网格紧急事件进行实时响应。
translated by 谷歌翻译
Non-convex AC optimal power flow (AC-OPF) is a fundamental optimization problem in power system analysis. The computational complexity of conventional solvers is typically high and not suitable for large-scale networks in real-time operation. Hence, deep learning based approaches have gained intensive attention to conduct the time-consuming training process offline. Supervised learning methods may yield a feasible AC-OPF solution with a small optimality gap. However, they often need conventional solvers to generate the training dataset. This paper proposes an end-to-end unsupervised learning based framework for AC-OPF. We develop a deep neural network to output a partial set of decision variables while the remaining variables are recovered by solving AC power flow equations. The fast decoupled power flow solver is adopted to further reduce the computational time. In addition, we propose using a modified augmented Lagrangian function as the training loss. The multipliers are adjusted dynamically based on the degree of constraint violation. Extensive numerical test results corroborate the advantages of our proposed approach over some existing methods.
translated by 谷歌翻译
要将计算负担从实时到延迟关键电源系统应用程序的脱机,最近的作品招待使用深神经网络(DNN)的想法来预测一次呈现的AC最佳功率流(AC-OPF)的解决方案负载需求。随着网络拓扑可能改变的,以样本有效的方式训练该DNN成为必需品。为提高数据效率,这项工作利用了OPF数据不是简单的训练标签,而是构成参数优化问题的解决方案。因此,我们倡导培训一个灵敏度通知的DNN(SI-DNN),不仅可以匹配OPF优化器,而且还匹配它们的部分导数相对于OPF参数(负载)。结果表明,所需的雅可比矩阵确实存在于温和条件下,并且可以从相关的原始/双解决方案中容易地计算。所提出的Si-DNN与广泛的OPF溶剂兼容,包括非凸出的二次约束的二次程序(QCQP),其半纤维程序(SDP)放松和MatPower;虽然Si-DNN可以在其他学习到OPF方案中无缝集成。三个基准电源系统的数值测试证实了SI-DNN在传统训练的DNN上预测的OPF解决方案的高级泛化和约束满意度,尤其是在低数据设置中。
translated by 谷歌翻译
由于负载和可再生能源的不确定性日益增长,对现代电网的安全和最佳运行产生了突出的挑战。随机最佳功率流(SOPF)制剂提供了一种通过计算在不确定性下保持可行性的派遣决策和控制政策来处理这些不确定性的机制。大多数SOPF配方考虑了简单的控制策略,例如数学上简单的仿射策略,类似于当前实践中使用的许多策略。通过机器学习(ML)算法的功效和一般控制政策的潜在好处的效果,我们提出了一个深度神经网络(DNN)基础的政策,该政策是实时预测发电机调度决策的不确定。使用解决SOPF的随机原始双重更新来学习DNN的权重,而无需先前一代训练标签,并且可以明确地解释SOPF中的可行性约束。 DNN政策对更简单的政策和它们在执行安全限制和产生附近的近最佳解决方案中的功效的优点在于机会在许多测试用例上受到限制的制定的情况下。
translated by 谷歌翻译
随着可再生于可再生能级的级别越来越多地对AC最佳功率流(AC OPF)进行数据驱动的方法的兴趣,以管理不确定性;然而,缺乏纪律的数据集创建和基准测试禁止在文献中的方法中进行了有用的比较。为了灌输置信度,模型必须能够可靠地预测跨各种操作条件的解决方案。本文开发了Julia和Python的OPF学习包,它使用计算上有效的方法来创建跨越AC OPF可行区域的广泛频谱的代表性数据集。负载配置文件从包含AC OPF可行集合的凸集均匀地采样。对于发现的每个不可行的点,通过使用宽松配方的性质,发现凸起的凸形集减少。该框架被示出为生成数据集,这些数据集更具代表性的整个可行性空间与文献中的传统技术,改善了机器学习模型性能。
translated by 谷歌翻译
功率流分析用于评估电力系统网络中的电流。功率流量计算用于确定系统的稳态变量,例如每个总线的电压幅度/相位角以及每个分支上的主动/无功流量。直流电流模型是一种流行的线性电流模型,广泛应用于电力行业。虽然它是快速且稳健的,但它可能导致一些关键传输线的线流量产生不准确的线流。可以通过利用历史网格配置文件的数据驱动方法部分地解决该缺陷。在本文中,训练了神经网络(NN)模型以预测使用历史电力系统数据来预测电力流量结果。虽然培训过程可能需要时间,但一旦训练,估计线流是非常快的。采用了所提出的基于NN的功率流模型和传统的直流电流模型之间的综合性能分析。可以得出结论,所提出的基于NN的电力流模型可以比直流电流模型快速更准确地找到解决方案。
translated by 谷歌翻译
可再生能源世代的高百分比渗透对电力系统引起了重大不确定性。它要求网格操作员更频繁地解决替代电流最佳功率流(AC-OPF)问题,以便在传输和分配网格中进行经济和可靠的操作。在本文中,我们开发了一种Deep神经网络(DNN)方法,称为DEEPOPF,用于在传统求解器使用的时间中解决AC-OPF问题。应用机器学习技术解决AC-OPF问题的关键困难在于确保获得的解决方案尊重平等和不平等的物理和操作约束。在[1],[2]中概括了2阶段的过程,DEEPOPF首先训练DNN模型,以预测一组独立的操作变量,然后通过求解功率流方程直接计算剩余的可靠性变量。这种方法不仅保留了平衡平等的限制,而且还减少了DNN预测的变量数量,从而减少了所需的神经元和训练数据的数量。然后,DeePOPF在培训过程中采用零级梯度估计技术采用惩罚方法,以保留其余的不平等约束。作为另一个贡献,我们根据所需的近似精度来驱动调整DNN的大小的条件,该准确性测量了DNN的概括能力。它为使用DNN解决AC-OPF问题提供了理论上的理由。 IEEE 30/118/300-BU和合成2000总线测试用例的仿真结果表明,与最先进的求解器相比,DEEPOPF最多将计算时间速度高达两个数量级,费用为费用$ <$ <$ 0.1%的成本差异。
translated by 谷歌翻译
在不确定性下,协调逆变器是用于集成可再生能源在配电网格中的缺点。除非频繁地呼吸折叠速度,否则控制逆变器给定近似网格条件或其代理成为一个关键规范。虽然深神经网络(DNN)可以学习最佳的逆变时间表,但保证可行性在很大程度上是难以捉摸的。而不是培训DNN以模仿已经计算的最佳功率流量(OPF)解决方案,而是将基于DNN的变频器策略集成到OPF中。所提出的DNN通过两个OPF替代方案培训,该替代方案限制了平均电压偏差,并且作为机会约束的凸起限制。训练有素的DNN可以由当前网格条件的部分,嘈杂或代理描述符驱动。当OPF必须为不可观察的馈线解决OPF而言,这很重要。假设网络模型是已知的,通过反向传播训练,并且在区分AC电流方程时训练。否则,提出了一种梯度的变体。后者当逆变器由具有仅访问电源流求解器或馈线的数字双胞胎的访问的聚合器控制时相关。数值测试将基于DNN的变频器控制方案与最佳逆变器设定值的优化和可行性进行比较。
translated by 谷歌翻译
非凸AC-OPF问题的多个负载分解映射的存在对深神经网络(DNN)方案构成了根本挑战。由于训练数据集可能包含与不同负载分解映射相对应的数据点的混合物,因此DNN可能无法学习合法的映射并生成劣质解决方案。我们建议DeepOpf-al作为解决此问题的增强学习方法。这个想法是训练DNN,以学习从增强输入(即(负载,初始点))的唯一映射到由具有负载和初始点作为进气口的迭代OPF求解器生成的解决方案。然后,我们将学习的增强映射应用于求解AC-OPF问题的速度要快得多。与最近的DNN方案相比,IEEE测试案例的模拟结果表明,DeepOPF-AL可以明显地取得更好的最优性和相似的可行性和加速性能,具有相同的DNN大小却提高了训练的复杂性。
translated by 谷歌翻译
到2035年,美国电力部门的转型正在进行中,以实现100%无碳污染的电力,以实现这一目标,同时保持安全可靠的电网,需要新的操作范式,以快速准确的决策来制定新的操作范式在动态和不确定的环境中。我们为动态网格重新配置(PHML-DYR)的决策提出了一个新颖的物理知识的机器学习框架,这是电源系统中的关键任务。动态重新配置(DYR)是一个动态设置开关状态的过程,从而导致最佳网格拓扑,从而最大程度地减少线路损耗。为了解决由于决策变量的混合性质而导致的NP硬度的潜在计算复杂性,我们建议使用物理信息信息的ML(PHML),该物理信息(PHML)将操作约束以及拓扑结构和连接性约束集成到神经网络框架中。我们的PHML方法学会同时优化网格拓扑和发电机调度,以满足负载,提高效率并保持在安全的操作范围内。我们证明了PHML-DYR在规范网格上的有效性,显示电力损耗的减少23%,并改善了电压曲线。我们还显示了使用PHML-DYR的数量级以及训练时间的约束违规行为的减少。
translated by 谷歌翻译
本文介绍了一个框架,以捕获先前棘手的优化约束,并通过使用神经网络将其转换为混合构成线性程序。我们编码以可拖动和顽固的约束为特征的优化问题的可行空间,例如微分方程,转到神经网络。利用神经网络的精确混合重新印象,我们解决了混合企业线性程序,该程序将解决方案准确地近似于最初棘手的非线性优化问题。我们将方法应用于交流最佳功率流问题(AC-OPF),其中直接包含动态安全性约束可使AC-OPF棘手。我们提出的方法具有比传统方法更明显的可扩展性。我们展示了考虑N-1安全性和小信号稳定性的电力系统操作方法,展示了如何有效地获得成本优势的解决方案,同时满足静态和动态安全性约束。
translated by 谷歌翻译
Machine learning (ML) algorithms are remarkably good at approximating complex non-linear relationships. Most ML training processes, however, are designed to deliver ML tools with good average performance, but do not offer any guarantees about their worst-case estimation error. For safety-critical systems such as power systems, this places a major barrier for their adoption. So far, approaches could determine the worst-case violations of only trained ML algorithms. To the best of our knowledge, this is the first paper to introduce a neural network training procedure designed to achieve both a good average performance and minimum worst-case violations. Using the Optimal Power Flow (OPF) problem as a guiding application, our approach (i) introduces a framework that reduces the worst-case generation constraint violations during training, incorporating them as a differentiable optimization layer; and (ii) presents a neural network sequential learning architecture to significantly accelerate it. We demonstrate the proposed architecture on four different test systems ranging from 39 buses to 162 buses, for both AC-OPF and DC-OPF applications.
translated by 谷歌翻译
由于固有的DNN预测误差,确保解决方案可行性是开发用于解决受约束优化问题的深度神经网络(DNN)方案的关键挑战。在本文中,我们提出了一种“预防性学习”的框架,以系统地保证DNN解决方案可行性的凸起约束和一般客观函数的问题。我们首先应用预测和重建设计,不仅保证平等约束,还可以利用它们来减少DNN预测的变量的数量。然后,作为关键方法贡献,我们系统地校准了DNN训练中使用的不等式约束,从而预测预测误差并确保所得到的解决方案仍然可行。我们表征校准量大和DNN尺寸,足以确保通用可行性。我们提出了一种新的敌对样本意识到培训算法,以改善DNN的最优性能而不牺牲可行性保证。总的来说,该框架提供了两个DNN。表征足够的DNN大小的第一个可以保证通用可行性,而来自所提出的培训算法的另一个进一步提高了最优性并同时保持DNN的通用可行性。我们应用预防性学习框架来开发Deepopf +,以解决网格运行中的基本DC最佳功率流量问题。它在确保在轻负载和重载制度中的可行性和获得一致的理想加速性能时,它可以改善现有的基于DNN的方案。仿真结果对IEEE案例-30 / 118/300测试用例显示DeepoPF +与最优性损失的最优损失和最高幅度计算加速度为100 \%$ 0.5%的可行解决方案,相比之下艺术迭代求解器。
translated by 谷歌翻译
本文介绍了电力系统运营商的域知识如何集成到强化学习(RL)框架中,以有效学习控制电网拓扑以防止热级联的代理。由于大搜索/优化空间,典型的基于RL的拓扑控制器无法表现良好。在这里,我们提出了一个基于演员 - 评论家的代理,以解决问题的组合性质,并使用由RTE,法国TSO开发的RL环境训练代理。为了解决大型优化空间的挑战,通过使用网络物理修改环境以增强代理学习来纳入训练过程中的基于奖励调整的基于课程的方法。此外,采用多种方案的并行训练方法来避免将代理偏置到几种情况,并使其稳健地对网格操作中的自然变异性。如果没有对培训过程进行这些修改,则RL代理失败了大多数测试场景,说明了正确整合物理系统的域知识以获得真实世界的RL学习的重要性。该代理通过RTE测试2019年学习,以运行电力网络挑战,并以精确度和第1位的速度授予第2位。开发的代码是公共使用开放的。
translated by 谷歌翻译
交替的电流(AC)偶然受限的最佳功率流(CC-OPF)问题解决了发电不确定性下发电和交付的经济效率。由于可再生能源量大量,后者是现代电网的内在固有的。尽管取得了学术上的成功,但AC CC-OPF问题是高度非线性和计算要求的,这限制了其实际影响。为了改善AC-OPF问题的复杂性/准确性权衡,本文提出了一种快速数据驱动的设置,该设置使用稀疏和混合的高斯流程(GP)框架,以模拟具有输入不确定性的功率流程方程。我们提倡通过数值研究对拟议方法的效率,而与最新方法相比,多个IEEE测试用例的效率快两倍,更准确。
translated by 谷歌翻译
Unit commitment (UC) are essential tools to transmission system operators for finding the most economical and feasible generation schedules and dispatch signals. Constraint screening has been receiving attention as it holds the promise for reducing a number of inactive or redundant constraints in the UC problem, so that the solution process of large scale UC problem can be accelerated by considering the reduced optimization problem. Standard constraint screening approach relies on optimizing over load and generations to find binding line flow constraints, yet the screening is conservative with a large percentage of constraints still reserved for the UC problem. In this paper, we propose a novel machine learning (ML) model to predict the most economical costs given load inputs. Such ML model bridges the cost perspectives of UC decisions to the optimization-based constraint screening model, and can screen out higher proportion of operational constraints. We verify the proposed method's performance on both sample-aware and sample-agnostic setting, and illustrate the proposed scheme can further reduce the computation time on a variety of setup for UC problems.
translated by 谷歌翻译
在具有可再生生成的大量份额的网格中,由于负载和发电的波动性增加,运营商将需要其他工具来评估运营风险。正向不确定性传播问题的计算要求必须解决众多安全受限的经济调度(SCED)优化,是这种实时风险评估的主要障碍。本文提出了一个即时风险评估学习框架(Jitralf)作为替代方案。 Jitralf训练风险代理,每天每小时一个,使用机器学习(ML)来预测估计风险所需的数量,而无需明确解决SCED问题。这大大减轻了正向不确定性传播的计算负担,并允许快速,实时的风险估计。本文还提出了一种新颖的,不对称的损失函数,并表明使用不对称损失训练的模型的性能优于使用对称损耗函数的模型。在法国传输系统上评估了Jitralf,以评估运营储量不足的风险,减轻负载的风险和预期的运营成本。
translated by 谷歌翻译
我们提出了一种基于图形神经网络(GNN)的端到端框架,以平衡通用网格中的功率流。优化被帧为监督的顶点回归任务,其中GNN培训以预测每个网格分支的电流和功率注入,从而产生功率流量平衡。通过将电网表示为与顶点的分支的线图,我们可以培训一个更准确和强大的GNN来改变底层拓扑。此外,通过使用专门的GNN层,我们能够构建一个非常深的架构,该架构占图表上的大街区,同时仅实现本地化操作。我们执行三个不同的实验来评估:i)使用深入GNN模型时使用本地化而不是全球运营的好处和趋势; ii)图形拓扑中对扰动的弹性;和iii)能力同时在多个网格拓扑上同时培训模型以及新的看不见网格的概括性的改进。拟议的框架是有效的,而且与基于深度学习的其他求解器相比,不仅对网格组件上的物理量而且对拓扑的物理量具有鲁棒性。
translated by 谷歌翻译
近年来,电力发电已导致美国超过四分之一的温室气体排放。将大量的可再生能源整合到电网中可能是减少电网中碳排放并减缓气候变化的最易于使用的方法。不幸的是,风和太阳能等最容易获得的可再生能源是高度波动的,因此给电网操作带来了很多不确定性,并挑战了现有的优化和控制政策。偶然受限的交流电(AC)最佳功率流(OPF)框架找到了最低成本生成的调度,以保持较低的概率将电网操作保持在安全限制之内。不幸的是,AC-OPF问题的偶然性约束扩展是非登记,计算挑战性的,需要了解系统参数以及有关可再生分布行为的其他假设。已知的线性和凸近似于上述问题,尽管可以进行操作,但对于操作实践来说太保守了,并且不考虑系统参数的不确定性。本文提出了一种基于高斯流程(GP)回归以缩小此差距的替代数据驱动方法。 GP方法学习了一个简单但非凸的数据驱动的近似值,可以包含不确定性输入的交流功率流程。然后,通过考虑输入和参数不确定性,将后者用于有效地确定CC-OPF的解。在众多IEEE测试案例中,说明了使用不同近似值的GP不确定性传播的拟议方法的实际效率。
translated by 谷歌翻译
本文考虑了最佳功率流(OPF)的优化代理,即近似于OPF的输入/输出关系的机器学习模型。最近的工作重点是表明此类代理可能具有高忠诚。但是,他们的培训需要大量数据,每个实例都需要(离线)解决输入分布样本的OPF。为了满足市场清除应用程序的要求,本文提出了积极的桶装采样(ABS),这是一个新型的活跃学习框架,旨在培训在一个时间限制内培训最佳OPF代理。ABS将输入分布分配到存储桶中,并使用采集函数来确定接下来的何处。它依靠自适应学习率,随着时间的推移会增加和降低。实验结果证明了ABS的好处。
translated by 谷歌翻译