到2035年,美国电力部门的转型正在进行中,以实现100%无碳污染的电力,以实现这一目标,同时保持安全可靠的电网,需要新的操作范式,以快速准确的决策来制定新的操作范式在动态和不确定的环境中。我们为动态网格重新配置(PHML-DYR)的决策提出了一个新颖的物理知识的机器学习框架,这是电源系统中的关键任务。动态重新配置(DYR)是一个动态设置开关状态的过程,从而导致最佳网格拓扑,从而最大程度地减少线路损耗。为了解决由于决策变量的混合性质而导致的NP硬度的潜在计算复杂性,我们建议使用物理信息信息的ML(PHML),该物理信息(PHML)将操作约束以及拓扑结构和连接性约束集成到神经网络框架中。我们的PHML方法学会同时优化网格拓扑和发电机调度,以满足负载,提高效率并保持在安全的操作范围内。我们证明了PHML-DYR在规范网格上的有效性,显示电力损耗的减少23%,并改善了电压曲线。我们还显示了使用PHML-DYR的数量级以及训练时间的约束违规行为的减少。
translated by 谷歌翻译
可再生能源世代的高百分比渗透对电力系统引起了重大不确定性。它要求网格操作员更频繁地解决替代电流最佳功率流(AC-OPF)问题,以便在传输和分配网格中进行经济和可靠的操作。在本文中,我们开发了一种Deep神经网络(DNN)方法,称为DEEPOPF,用于在传统求解器使用的时间中解决AC-OPF问题。应用机器学习技术解决AC-OPF问题的关键困难在于确保获得的解决方案尊重平等和不平等的物理和操作约束。在[1],[2]中概括了2阶段的过程,DEEPOPF首先训练DNN模型,以预测一组独立的操作变量,然后通过求解功率流方程直接计算剩余的可靠性变量。这种方法不仅保留了平衡平等的限制,而且还减少了DNN预测的变量数量,从而减少了所需的神经元和训练数据的数量。然后,DeePOPF在培训过程中采用零级梯度估计技术采用惩罚方法,以保留其余的不平等约束。作为另一个贡献,我们根据所需的近似精度来驱动调整DNN的大小的条件,该准确性测量了DNN的概括能力。它为使用DNN解决AC-OPF问题提供了理论上的理由。 IEEE 30/118/300-BU和合成2000总线测试用例的仿真结果表明,与最先进的求解器相比,DEEPOPF最多将计算时间速度高达两个数量级,费用为费用$ <$ <$ 0.1%的成本差异。
translated by 谷歌翻译
本文介绍了一个框架,以捕获先前棘手的优化约束,并通过使用神经网络将其转换为混合构成线性程序。我们编码以可拖动和顽固的约束为特征的优化问题的可行空间,例如微分方程,转到神经网络。利用神经网络的精确混合重新印象,我们解决了混合企业线性程序,该程序将解决方案准确地近似于最初棘手的非线性优化问题。我们将方法应用于交流最佳功率流问题(AC-OPF),其中直接包含动态安全性约束可使AC-OPF棘手。我们提出的方法具有比传统方法更明显的可扩展性。我们展示了考虑N-1安全性和小信号稳定性的电力系统操作方法,展示了如何有效地获得成本优势的解决方案,同时满足静态和动态安全性约束。
translated by 谷歌翻译
Machine learning (ML) algorithms are remarkably good at approximating complex non-linear relationships. Most ML training processes, however, are designed to deliver ML tools with good average performance, but do not offer any guarantees about their worst-case estimation error. For safety-critical systems such as power systems, this places a major barrier for their adoption. So far, approaches could determine the worst-case violations of only trained ML algorithms. To the best of our knowledge, this is the first paper to introduce a neural network training procedure designed to achieve both a good average performance and minimum worst-case violations. Using the Optimal Power Flow (OPF) problem as a guiding application, our approach (i) introduces a framework that reduces the worst-case generation constraint violations during training, incorporating them as a differentiable optimization layer; and (ii) presents a neural network sequential learning architecture to significantly accelerate it. We demonstrate the proposed architecture on four different test systems ranging from 39 buses to 162 buses, for both AC-OPF and DC-OPF applications.
translated by 谷歌翻译
由于固有的DNN预测误差,确保解决方案可行性是开发用于解决受约束优化问题的深度神经网络(DNN)方案的关键挑战。在本文中,我们提出了一种“预防性学习”的框架,以系统地保证DNN解决方案可行性的凸起约束和一般客观函数的问题。我们首先应用预测和重建设计,不仅保证平等约束,还可以利用它们来减少DNN预测的变量的数量。然后,作为关键方法贡献,我们系统地校准了DNN训练中使用的不等式约束,从而预测预测误差并确保所得到的解决方案仍然可行。我们表征校准量大和DNN尺寸,足以确保通用可行性。我们提出了一种新的敌对样本意识到培训算法,以改善DNN的最优性能而不牺牲可行性保证。总的来说,该框架提供了两个DNN。表征足够的DNN大小的第一个可以保证通用可行性,而来自所提出的培训算法的另一个进一步提高了最优性并同时保持DNN的通用可行性。我们应用预防性学习框架来开发Deepopf +,以解决网格运行中的基本DC最佳功率流量问题。它在确保在轻负载和重载制度中的可行性和获得一致的理想加速性能时,它可以改善现有的基于DNN的方案。仿真结果对IEEE案例-30 / 118/300测试用例显示DeepoPF +与最优性损失的最优损失和最高幅度计算加速度为100 \%$ 0.5%的可行解决方案,相比之下艺术迭代求解器。
translated by 谷歌翻译
Non-convex AC optimal power flow (AC-OPF) is a fundamental optimization problem in power system analysis. The computational complexity of conventional solvers is typically high and not suitable for large-scale networks in real-time operation. Hence, deep learning based approaches have gained intensive attention to conduct the time-consuming training process offline. Supervised learning methods may yield a feasible AC-OPF solution with a small optimality gap. However, they often need conventional solvers to generate the training dataset. This paper proposes an end-to-end unsupervised learning based framework for AC-OPF. We develop a deep neural network to output a partial set of decision variables while the remaining variables are recovered by solving AC power flow equations. The fast decoupled power flow solver is adopted to further reduce the computational time. In addition, we propose using a modified augmented Lagrangian function as the training loss. The multipliers are adjusted dynamically based on the degree of constraint violation. Extensive numerical test results corroborate the advantages of our proposed approach over some existing methods.
translated by 谷歌翻译
要将计算负担从实时到延迟关键电源系统应用程序的脱机,最近的作品招待使用深神经网络(DNN)的想法来预测一次呈现的AC最佳功率流(AC-OPF)的解决方案负载需求。随着网络拓扑可能改变的,以样本有效的方式训练该DNN成为必需品。为提高数据效率,这项工作利用了OPF数据不是简单的训练标签,而是构成参数优化问题的解决方案。因此,我们倡导培训一个灵敏度通知的DNN(SI-DNN),不仅可以匹配OPF优化器,而且还匹配它们的部分导数相对于OPF参数(负载)。结果表明,所需的雅可比矩阵确实存在于温和条件下,并且可以从相关的原始/双解决方案中容易地计算。所提出的Si-DNN与广泛的OPF溶剂兼容,包括非凸出的二次约束的二次程序(QCQP),其半纤维程序(SDP)放松和MatPower;虽然Si-DNN可以在其他学习到OPF方案中无缝集成。三个基准电源系统的数值测试证实了SI-DNN在传统训练的DNN上预测的OPF解决方案的高级泛化和约束满意度,尤其是在低数据设置中。
translated by 谷歌翻译
本文研究了如何训练直接近似约束优化问题的最佳解决方案的机器学习模型。这是在约束下的经验风险最小化,这是具有挑战性的,因为培训必须平衡最佳和可行性条件。监督学习方法通​​常通过在大量预处理实例中训练模型来应对这一挑战。本文采用了不同的途径,并提出了原始偶尔学习的想法(PDL),这是一种自我监督的培训方法,不需要一组预处理的实例或用于培训和推理的优化求解器。取而代之的是,PDL模拟了增强拉格朗日方法(ALM)的轨迹,并共同训练原始和双神经网络。作为一种原始的双重方法,PDL使用用于训练原始网络的损失函数中的约束项的实例特定惩罚。实验表明,在一组非线性优化基准上,PDL通常表现出可忽略的约束违规和较小的最佳差距,并且非常接近ALM优化。与现有方法相比,PDL在最佳差距,约束违规和培训时间方面还表现出改善或类似的性能。
translated by 谷歌翻译
在不确定性下,协调逆变器是用于集成可再生能源在配电网格中的缺点。除非频繁地呼吸折叠速度,否则控制逆变器给定近似网格条件或其代理成为一个关键规范。虽然深神经网络(DNN)可以学习最佳的逆变时间表,但保证可行性在很大程度上是难以捉摸的。而不是培训DNN以模仿已经计算的最佳功率流量(OPF)解决方案,而是将基于DNN的变频器策略集成到OPF中。所提出的DNN通过两个OPF替代方案培训,该替代方案限制了平均电压偏差,并且作为机会约束的凸起限制。训练有素的DNN可以由当前网格条件的部分,嘈杂或代理描述符驱动。当OPF必须为不可观察的馈线解决OPF而言,这很重要。假设网络模型是已知的,通过反向传播训练,并且在区分AC电流方程时训练。否则,提出了一种梯度的变体。后者当逆变器由具有仅访问电源流求解器或馈线的数字双胞胎的访问的聚合器控制时相关。数值测试将基于DNN的变频器控制方案与最佳逆变器设定值的优化和可行性进行比较。
translated by 谷歌翻译
Ongoing risks from climate change have impacted the livelihood of global nomadic communities, and are likely to lead to increased migratory movements in coming years. As a result, mobility considerations are becoming increasingly important in energy systems planning, particularly to achieve energy access in developing countries. Advanced Plug and Play control strategies have been recently developed with such a decentralized framework in mind, more easily allowing for the interconnection of nomadic communities, both to each other and to the main grid. In light of the above, the design and planning strategy of a mobile multi-energy supply system for a nomadic community is investigated in this work. Motivated by the scale and dimensionality of the associated uncertainties, impacting all major design and decision variables over the 30-year planning horizon, Deep Reinforcement Learning (DRL) is implemented for the design and planning problem tackled. DRL based solutions are benchmarked against several rigid baseline design options to compare expected performance under uncertainty. The results on a case study for ger communities in Mongolia suggest that mobile nomadic energy systems can be both technically and economically feasible, particularly when considering flexibility, although the degree of spatial dispersion among households is an important limiting factor. Key economic, sustainability and resilience indicators such as Cost, Equivalent Emissions and Total Unmet Load are measured, suggesting potential improvements compared to available baselines of up to 25%, 67% and 76%, respectively. Finally, the decomposition of values of flexibility and plug and play operation is presented using a variation of real options theory, with important implications for both nomadic communities and policymakers focused on enabling their energy access.
translated by 谷歌翻译
本文介绍了电力系统运营商的域知识如何集成到强化学习(RL)框架中,以有效学习控制电网拓扑以防止热级联的代理。由于大搜索/优化空间,典型的基于RL的拓扑控制器无法表现良好。在这里,我们提出了一个基于演员 - 评论家的代理,以解决问题的组合性质,并使用由RTE,法国TSO开发的RL环境训练代理。为了解决大型优化空间的挑战,通过使用网络物理修改环境以增强代理学习来纳入训练过程中的基于奖励调整的基于课程的方法。此外,采用多种方案的并行训练方法来避免将代理偏置到几种情况,并使其稳健地对网格操作中的自然变异性。如果没有对培训过程进行这些修改,则RL代理失败了大多数测试场景,说明了正确整合物理系统的域知识以获得真实世界的RL学习的重要性。该代理通过RTE测试2019年学习,以运行电力网络挑战,并以精确度和第1位的速度授予第2位。开发的代码是公共使用开放的。
translated by 谷歌翻译
组合优化是运营研究和计算机科学领域的一个公认领域。直到最近,它的方法一直集中在孤立地解决问题实例,而忽略了它们通常源于实践中的相关数据分布。但是,近年来,人们对使用机器学习,尤其是图形神经网络(GNN)的兴趣激增,作为组合任务的关键构件,直接作为求解器或通过增强确切的求解器。GNN的电感偏差有效地编码了组合和关系输入,因为它们对排列和对输入稀疏性的意识的不变性。本文介绍了对这个新兴领域的最新主要进步的概念回顾,旨在优化和机器学习研究人员。
translated by 谷歌翻译
Reliability Assessment Commitment (RAC) Optimization is increasingly important in grid operations due to larger shares of renewable generations in the generation mix and increased prediction errors. Independent System Operators (ISOs) also aim at using finer time granularities, longer time horizons, and possibly stochastic formulations for additional economic and reliability benefits. The goal of this paper is to address the computational challenges arising in extending the scope of RAC formulations. It presents RACLEARN that (1) uses Graph Neural Networks (GNN) to predict generator commitments and active line constraints, (2) associates a confidence value to each commitment prediction, (3) selects a subset of the high-confidence predictions, which are (4) repaired for feasibility, and (5) seeds a state-of-the-art optimization algorithm with the feasible predictions and the active constraints. Experimental results on exact RAC formulations used by the Midcontinent Independent System Operator (MISO) and an actual transmission network (8965 transmission lines, 6708 buses, 1890 generators, and 6262 load units) show that the RACLEARN framework can speed up RAC optimization by factors ranging from 2 to 4 with negligible loss in solution quality.
translated by 谷歌翻译
对意外突发事件的有效和及时的响应对于提高电网的恢复性至关重要。考虑到级联传播的快速,复杂过程,由于计算复杂性和通信延迟问题,难以在大型网络中获得校正动作,例如最佳负载脱落(OLS)。这项工作通过在通过离线神经网络(NN)培训下,通过在各种潜在的应变场景下构建负载脱落的最佳决策规则来提出创新的学习措施方法。值得注意的是,所提出的基于NN的OLS决策是完全分散的,使单独的负载中心能够使用易于获得的局部测量来快速地对特定的应变作出反应。IEEE 14总线系统的数值研究表明了我们可扩展的OLS设计的有效性,用于对严格的网格紧急事件进行实时响应。
translated by 谷歌翻译
当前的能源转变促进了电力和天然气系统之间的运行融合。在这个方向上,改善协调能力和气体调度内的非凸天然气体流动动力学的建模至关重要。在这项工作中,我们提出了一种神经网络受限的优化方法,其中包括基于监督机器学习的韦茅斯方程的回归模型。 Weymouth方程将气体流动与每个管道的入口和出口压力通过二次平等,该二次相等性,该平等被神经网络捕获。后者是通过可处理的混合插入线性程序编码为约束集的。此外,我们提出的框架能够考虑双向性,而无需求助于复杂且可能不准确的凸化方法。我们通过引入激活函数的重新制定来进一步增强我们的模型,从而提高计算效率。一项基于现实生活中的比利时力量和气体系统的广泛数值研究表明,所提出的方法在准确性和障碍方面产生了有希望的结果。
translated by 谷歌翻译
由于负载和可再生能源的不确定性日益增长,对现代电网的安全和最佳运行产生了突出的挑战。随机最佳功率流(SOPF)制剂提供了一种通过计算在不确定性下保持可行性的派遣决策和控制政策来处理这些不确定性的机制。大多数SOPF配方考虑了简单的控制策略,例如数学上简单的仿射策略,类似于当前实践中使用的许多策略。通过机器学习(ML)算法的功效和一般控制政策的潜在好处的效果,我们提出了一个深度神经网络(DNN)基础的政策,该政策是实时预测发电机调度决策的不确定。使用解决SOPF的随机原始双重更新来学习DNN的权重,而无需先前一代训练标签,并且可以明确地解释SOPF中的可行性约束。 DNN政策对更简单的政策和它们在执行安全限制和产生附近的近最佳解决方案中的功效的优点在于机会在许多测试用例上受到限制的制定的情况下。
translated by 谷歌翻译
增强现有传输线是对抗传输拥塞并保证传输安全性随需求增加并增强可再生能源的有用工具。这项研究涉及选择其容量应扩大的线路的选择,以及从独立系统操作员(ISO)的角度来看,通过考虑传输线约束以及发电和需求平衡条件,并结合坡道 - 上升和启动坡道率,关闭坡道速率,坡度降低率限制以及最小降低时间。为此,我们开发了ISO单元承诺和经济调度模型,并将其作为混合整数线性编程(MILP)问题的右侧不确定性多个参数分析。我们首先放松二进制变量,以连续变量并采用拉格朗日方法和Karush-Kuhn-Tucker条件,以获得最佳的解决方案(最佳决策变量和目标函数)以及与主动和无效约束相关的关键区域。此外,我们通过确定每个节点处的问题上限,然后比较上限和下限之间的差异,并在决策制造商中达到近似最佳解决方案,从而扩展传统分支和界限方法,以解决大规模MILP问题。可耐受的误差范围。另外,目标函数在每行参数上的第一个衍生物用于告知各行的选择,以简化拥塞和最大化社会福利。最后,通过平衡目标函数的成本率和阵容升级成本来选择容量升级的量。我们的发现得到了数值模拟的支持,并为传输线计划提供了决策指导。
translated by 谷歌翻译
Nowadays, the PQ flexibility from the distributed energy resources (DERs) in the high voltage (HV) grids plays a more critical and significant role in grid congestion management in TSO grids. This work proposed a multi-stage deep reinforcement learning approach to estimate the PQ flexibility (PQ area) at the TSO-DSO interfaces and identifies the DER PQ setpoints for each operating point in a way, that DERs in the meshed HV grid can be coordinated to offer flexibility for the transmission grid. In the estimation process, we consider the steady-state grid limits and the robustness in the resulting voltage profile against uncertainties and the N-1 security criterion regarding thermal line loading, essential for real-life grid operational planning applications. Using deep reinforcement learning (DRL) for PQ flexibility estimation is the first of its kind. Furthermore, our approach of considering N-1 security criterion for meshed grids and robustness against uncertainty directly in the optimization tasks offers a new perspective besides the common relaxation schema in finding a solution with mathematical optimal power flow (OPF). Finally, significant improvements in the computational efficiency in estimation PQ area are the highlights of the proposed method.
translated by 谷歌翻译
随着可再生于可再生能级的级别越来越多地对AC最佳功率流(AC OPF)进行数据驱动的方法的兴趣,以管理不确定性;然而,缺乏纪律的数据集创建和基准测试禁止在文献中的方法中进行了有用的比较。为了灌输置信度,模型必须能够可靠地预测跨各种操作条件的解决方案。本文开发了Julia和Python的OPF学习包,它使用计算上有效的方法来创建跨越AC OPF可行区域的广泛频谱的代表性数据集。负载配置文件从包含AC OPF可行集合的凸集均匀地采样。对于发现的每个不可行的点,通过使用宽松配方的性质,发现凸起的凸形集减少。该框架被示出为生成数据集,这些数据集更具代表性的整个可行性空间与文献中的传统技术,改善了机器学习模型性能。
translated by 谷歌翻译
我们考虑非线性优化问题,涉及神经网络代表代理模型。我们首先展示了如何直接将神经网络评估嵌入优化模型中,突出难以防止收敛的方法,然后表征这些模型的平稳性。然后,我们在具有Relu激活的前馈神经网络的特定情况下存在两种替代配方,其具有recu激活:作为混合整数优化问题,作为具有互补限制的数学程序。对于后一种制剂,我们证明了在该问题的点处的有同性,对应于嵌入式制剂的实质性。这些配方中的每一个都可以用最先进的优化方法来解决,并且我们展示了如何为这些方法获得良好的初始可行解决方案。我们将三种实际应用的配方进行比较,在燃烧发动机的设计和控制中产生的三种实际应用,在对分类器网络的对抗攻击中产生的产生,以及在油井网中的最佳流动确定。
translated by 谷歌翻译