可再生能源世代的高百分比渗透对电力系统引起了重大不确定性。它要求网格操作员更频繁地解决替代电流最佳功率流(AC-OPF)问题,以便在传输和分配网格中进行经济和可靠的操作。在本文中,我们开发了一种Deep神经网络(DNN)方法,称为DEEPOPF,用于在传统求解器使用的时间中解决AC-OPF问题。应用机器学习技术解决AC-OPF问题的关键困难在于确保获得的解决方案尊重平等和不平等的物理和操作约束。在[1],[2]中概括了2阶段的过程,DEEPOPF首先训练DNN模型,以预测一组独立的操作变量,然后通过求解功率流方程直接计算剩余的可靠性变量。这种方法不仅保留了平衡平等的限制,而且还减少了DNN预测的变量数量,从而减少了所需的神经元和训练数据的数量。然后,DeePOPF在培训过程中采用零级梯度估计技术采用惩罚方法,以保留其余的不平等约束。作为另一个贡献,我们根据所需的近似精度来驱动调整DNN的大小的条件,该准确性测量了DNN的概括能力。它为使用DNN解决AC-OPF问题提供了理论上的理由。 IEEE 30/118/300-BU和合成2000总线测试用例的仿真结果表明,与最先进的求解器相比,DEEPOPF最多将计算时间速度高达两个数量级,费用为费用$ <$ <$ 0.1%的成本差异。
translated by 谷歌翻译
由于固有的DNN预测误差,确保解决方案可行性是开发用于解决受约束优化问题的深度神经网络(DNN)方案的关键挑战。在本文中,我们提出了一种“预防性学习”的框架,以系统地保证DNN解决方案可行性的凸起约束和一般客观函数的问题。我们首先应用预测和重建设计,不仅保证平等约束,还可以利用它们来减少DNN预测的变量的数量。然后,作为关键方法贡献,我们系统地校准了DNN训练中使用的不等式约束,从而预测预测误差并确保所得到的解决方案仍然可行。我们表征校准量大和DNN尺寸,足以确保通用可行性。我们提出了一种新的敌对样本意识到培训算法,以改善DNN的最优性能而不牺牲可行性保证。总的来说,该框架提供了两个DNN。表征足够的DNN大小的第一个可以保证通用可行性,而来自所提出的培训算法的另一个进一步提高了最优性并同时保持DNN的通用可行性。我们应用预防性学习框架来开发Deepopf +,以解决网格运行中的基本DC最佳功率流量问题。它在确保在轻负载和重载制度中的可行性和获得一致的理想加速性能时,它可以改善现有的基于DNN的方案。仿真结果对IEEE案例-30 / 118/300测试用例显示DeepoPF +与最优性损失的最优损失和最高幅度计算加速度为100 \%$ 0.5%的可行解决方案,相比之下艺术迭代求解器。
translated by 谷歌翻译
非凸AC-OPF问题的多个负载分解映射的存在对深神经网络(DNN)方案构成了根本挑战。由于训练数据集可能包含与不同负载分解映射相对应的数据点的混合物,因此DNN可能无法学习合法的映射并生成劣质解决方案。我们建议DeepOpf-al作为解决此问题的增强学习方法。这个想法是训练DNN,以学习从增强输入(即(负载,初始点))的唯一映射到由具有负载和初始点作为进气口的迭代OPF求解器生成的解决方案。然后,我们将学习的增强映射应用于求解AC-OPF问题的速度要快得多。与最近的DNN方案相比,IEEE测试案例的模拟结果表明,DeepOPF-AL可以明显地取得更好的最优性和相似的可行性和加速性能,具有相同的DNN大小却提高了训练的复杂性。
translated by 谷歌翻译
Non-convex AC optimal power flow (AC-OPF) is a fundamental optimization problem in power system analysis. The computational complexity of conventional solvers is typically high and not suitable for large-scale networks in real-time operation. Hence, deep learning based approaches have gained intensive attention to conduct the time-consuming training process offline. Supervised learning methods may yield a feasible AC-OPF solution with a small optimality gap. However, they often need conventional solvers to generate the training dataset. This paper proposes an end-to-end unsupervised learning based framework for AC-OPF. We develop a deep neural network to output a partial set of decision variables while the remaining variables are recovered by solving AC power flow equations. The fast decoupled power flow solver is adopted to further reduce the computational time. In addition, we propose using a modified augmented Lagrangian function as the training loss. The multipliers are adjusted dynamically based on the degree of constraint violation. Extensive numerical test results corroborate the advantages of our proposed approach over some existing methods.
translated by 谷歌翻译
要将计算负担从实时到延迟关键电源系统应用程序的脱机,最近的作品招待使用深神经网络(DNN)的想法来预测一次呈现的AC最佳功率流(AC-OPF)的解决方案负载需求。随着网络拓扑可能改变的,以样本有效的方式训练该DNN成为必需品。为提高数据效率,这项工作利用了OPF数据不是简单的训练标签,而是构成参数优化问题的解决方案。因此,我们倡导培训一个灵敏度通知的DNN(SI-DNN),不仅可以匹配OPF优化器,而且还匹配它们的部分导数相对于OPF参数(负载)。结果表明,所需的雅可比矩阵确实存在于温和条件下,并且可以从相关的原始/双解决方案中容易地计算。所提出的Si-DNN与广泛的OPF溶剂兼容,包括非凸出的二次约束的二次程序(QCQP),其半纤维程序(SDP)放松和MatPower;虽然Si-DNN可以在其他学习到OPF方案中无缝集成。三个基准电源系统的数值测试证实了SI-DNN在传统训练的DNN上预测的OPF解决方案的高级泛化和约束满意度,尤其是在低数据设置中。
translated by 谷歌翻译
本文介绍了一个框架,以捕获先前棘手的优化约束,并通过使用神经网络将其转换为混合构成线性程序。我们编码以可拖动和顽固的约束为特征的优化问题的可行空间,例如微分方程,转到神经网络。利用神经网络的精确混合重新印象,我们解决了混合企业线性程序,该程序将解决方案准确地近似于最初棘手的非线性优化问题。我们将方法应用于交流最佳功率流问题(AC-OPF),其中直接包含动态安全性约束可使AC-OPF棘手。我们提出的方法具有比传统方法更明显的可扩展性。我们展示了考虑N-1安全性和小信号稳定性的电力系统操作方法,展示了如何有效地获得成本优势的解决方案,同时满足静态和动态安全性约束。
translated by 谷歌翻译
由于负载和可再生能源的不确定性日益增长,对现代电网的安全和最佳运行产生了突出的挑战。随机最佳功率流(SOPF)制剂提供了一种通过计算在不确定性下保持可行性的派遣决策和控制政策来处理这些不确定性的机制。大多数SOPF配方考虑了简单的控制策略,例如数学上简单的仿射策略,类似于当前实践中使用的许多策略。通过机器学习(ML)算法的功效和一般控制政策的潜在好处的效果,我们提出了一个深度神经网络(DNN)基础的政策,该政策是实时预测发电机调度决策的不确定。使用解决SOPF的随机原始双重更新来学习DNN的权重,而无需先前一代训练标签,并且可以明确地解释SOPF中的可行性约束。 DNN政策对更简单的政策和它们在执行安全限制和产生附近的近最佳解决方案中的功效的优点在于机会在许多测试用例上受到限制的制定的情况下。
translated by 谷歌翻译
在不确定性下,协调逆变器是用于集成可再生能源在配电网格中的缺点。除非频繁地呼吸折叠速度,否则控制逆变器给定近似网格条件或其代理成为一个关键规范。虽然深神经网络(DNN)可以学习最佳的逆变时间表,但保证可行性在很大程度上是难以捉摸的。而不是培训DNN以模仿已经计算的最佳功率流量(OPF)解决方案,而是将基于DNN的变频器策略集成到OPF中。所提出的DNN通过两个OPF替代方案培训,该替代方案限制了平均电压偏差,并且作为机会约束的凸起限制。训练有素的DNN可以由当前网格条件的部分,嘈杂或代理描述符驱动。当OPF必须为不可观察的馈线解决OPF而言,这很重要。假设网络模型是已知的,通过反向传播训练,并且在区分AC电流方程时训练。否则,提出了一种梯度的变体。后者当逆变器由具有仅访问电源流求解器或馈线的数字双胞胎的访问的聚合器控制时相关。数值测试将基于DNN的变频器控制方案与最佳逆变器设定值的优化和可行性进行比较。
translated by 谷歌翻译
本文研究了如何训练直接近似约束优化问题的最佳解决方案的机器学习模型。这是在约束下的经验风险最小化,这是具有挑战性的,因为培训必须平衡最佳和可行性条件。监督学习方法通​​常通过在大量预处理实例中训练模型来应对这一挑战。本文采用了不同的途径,并提出了原始偶尔学习的想法(PDL),这是一种自我监督的培训方法,不需要一组预处理的实例或用于培训和推理的优化求解器。取而代之的是,PDL模拟了增强拉格朗日方法(ALM)的轨迹,并共同训练原始和双神经网络。作为一种原始的双重方法,PDL使用用于训练原始网络的损失函数中的约束项的实例特定惩罚。实验表明,在一组非线性优化基准上,PDL通常表现出可忽略的约束违规和较小的最佳差距,并且非常接近ALM优化。与现有方法相比,PDL在最佳差距,约束违规和培训时间方面还表现出改善或类似的性能。
translated by 谷歌翻译
到2035年,美国电力部门的转型正在进行中,以实现100%无碳污染的电力,以实现这一目标,同时保持安全可靠的电网,需要新的操作范式,以快速准确的决策来制定新的操作范式在动态和不确定的环境中。我们为动态网格重新配置(PHML-DYR)的决策提出了一个新颖的物理知识的机器学习框架,这是电源系统中的关键任务。动态重新配置(DYR)是一个动态设置开关状态的过程,从而导致最佳网格拓扑,从而最大程度地减少线路损耗。为了解决由于决策变量的混合性质而导致的NP硬度的潜在计算复杂性,我们建议使用物理信息信息的ML(PHML),该物理信息(PHML)将操作约束以及拓扑结构和连接性约束集成到神经网络框架中。我们的PHML方法学会同时优化网格拓扑和发电机调度,以满足负载,提高效率并保持在安全的操作范围内。我们证明了PHML-DYR在规范网格上的有效性,显示电力损耗的减少23%,并改善了电压曲线。我们还显示了使用PHML-DYR的数量级以及训练时间的约束违规行为的减少。
translated by 谷歌翻译
最佳功率流(OPF)是电力系统中的一个基本问题。它是计算的具有挑战性,最近的研究已经建议使用深神经网络(DNN)在与通过经典优化方法获得的那些相比时在大大降低的运行时找到OPF近似。虽然这些作品表明,令人鼓舞的准确性和运行时的结果,但对于为什么这些模型可以准确地预测OPF解决方案以及宽大的鲁棒性,而令人愉快的结果。本文提供了解决这种知识差距的前进。该纸张将发电机输出的波动性连接到学习模型近似对象的能力,它阐明了影响DNN模型的特征来学习良好的预测因子,并提出了一种利用此目的观察的新模型纸张生产精确且强大的opf预测。
translated by 谷歌翻译
我们考虑非线性优化问题,涉及神经网络代表代理模型。我们首先展示了如何直接将神经网络评估嵌入优化模型中,突出难以防止收敛的方法,然后表征这些模型的平稳性。然后,我们在具有Relu激活的前馈神经网络的特定情况下存在两种替代配方,其具有recu激活:作为混合整数优化问题,作为具有互补限制的数学程序。对于后一种制剂,我们证明了在该问题的点处的有同性,对应于嵌入式制剂的实质性。这些配方中的每一个都可以用最先进的优化方法来解决,并且我们展示了如何为这些方法获得良好的初始可行解决方案。我们将三种实际应用的配方进行比较,在燃烧发动机的设计和控制中产生的三种实际应用,在对分类器网络的对抗攻击中产生的产生,以及在油井网中的最佳流动确定。
translated by 谷歌翻译
Machine learning (ML) algorithms are remarkably good at approximating complex non-linear relationships. Most ML training processes, however, are designed to deliver ML tools with good average performance, but do not offer any guarantees about their worst-case estimation error. For safety-critical systems such as power systems, this places a major barrier for their adoption. So far, approaches could determine the worst-case violations of only trained ML algorithms. To the best of our knowledge, this is the first paper to introduce a neural network training procedure designed to achieve both a good average performance and minimum worst-case violations. Using the Optimal Power Flow (OPF) problem as a guiding application, our approach (i) introduces a framework that reduces the worst-case generation constraint violations during training, incorporating them as a differentiable optimization layer; and (ii) presents a neural network sequential learning architecture to significantly accelerate it. We demonstrate the proposed architecture on four different test systems ranging from 39 buses to 162 buses, for both AC-OPF and DC-OPF applications.
translated by 谷歌翻译
近年来,电力发电已导致美国超过四分之一的温室气体排放。将大量的可再生能源整合到电网中可能是减少电网中碳排放并减缓气候变化的最易于使用的方法。不幸的是,风和太阳能等最容易获得的可再生能源是高度波动的,因此给电网操作带来了很多不确定性,并挑战了现有的优化和控制政策。偶然受限的交流电(AC)最佳功率流(OPF)框架找到了最低成本生成的调度,以保持较低的概率将电网操作保持在安全限制之内。不幸的是,AC-OPF问题的偶然性约束扩展是非登记,计算挑战性的,需要了解系统参数以及有关可再生分布行为的其他假设。已知的线性和凸近似于上述问题,尽管可以进行操作,但对于操作实践来说太保守了,并且不考虑系统参数的不确定性。本文提出了一种基于高斯流程(GP)回归以缩小此差距的替代数据驱动方法。 GP方法学习了一个简单但非凸的数据驱动的近似值,可以包含不确定性输入的交流功率流程。然后,通过考虑输入和参数不确定性,将后者用于有效地确定CC-OPF的解。在众多IEEE测试案例中,说明了使用不同近似值的GP不确定性传播的拟议方法的实际效率。
translated by 谷歌翻译
随着可再生于可再生能级的级别越来越多地对AC最佳功率流(AC OPF)进行数据驱动的方法的兴趣,以管理不确定性;然而,缺乏纪律的数据集创建和基准测试禁止在文献中的方法中进行了有用的比较。为了灌输置信度,模型必须能够可靠地预测跨各种操作条件的解决方案。本文开发了Julia和Python的OPF学习包,它使用计算上有效的方法来创建跨越AC OPF可行区域的广泛频谱的代表性数据集。负载配置文件从包含AC OPF可行集合的凸集均匀地采样。对于发现的每个不可行的点,通过使用宽松配方的性质,发现凸起的凸形集减少。该框架被示出为生成数据集,这些数据集更具代表性的整个可行性空间与文献中的传统技术,改善了机器学习模型性能。
translated by 谷歌翻译
机器学习在解决无线干扰管理问题方面取得了成功。已经培训了不同种类的深神经网络(DNN),以完成功率控制,波束成形和准入控制等关键任务。基于DNNS的干扰管理模型有两个流行的培训范式:监督学习(即,由优化算法产生的拟合标签)和无监督的学习(即,直接优化一些系统性能测量)。虽然这两种范式都在实践中广泛应用,但由于对这些方法缺乏任何理论理解,但目前尚不清楚如何系统地理解和比较他们的性能。在这项工作中,我们开展理论研究,为这两个训练范例提供了一些深入的了解。首先,我们展示了一些令人惊讶的结果,即对于一些特殊的功率控制问题,无监督的学习可以表现比监督对手更糟糕,因为它更有可能陷入一些低质量的本地解决方案。然后,我们提供了一系列理论结果,以进一步了解两种方法的性质。一般来说,我们表明,当有高质量的标签可用时,监督学习不太可能陷入解决方案,而不是无监督的对应物。此外,我们开发了一种半监督的学习方法,可以妥善整合这两个训练范例,可以有效地利用有限数量的标签来找到高质量的解决方案。为了我们的知识,这些是第一种在基于学习的无线通信系统设计中了解不同培训方法的第一组理论结果。
translated by 谷歌翻译
给定数据点之间的一组差异测量值,确定哪种度量表示与输入测量最“一致”或最能捕获数据相关几何特征的度量是许多机器学习算法的关键步骤。现有方法仅限于特定类型的指标或小问题大小,因为在此类问题中有大量的度量约束。在本文中,我们提供了一种活跃的集合算法,即项目和忘记,该算法使用Bregman的预测,以解决许多(可能是指数)不平等约束的度量约束问题。我们提供了\ textsc {project and Hoses}的理论分析,并证明我们的算法会收敛到全局最佳解决方案,并以指数速率渐近地渐近地衰减了当前迭代的$ L_2 $距离。我们证明,使用我们的方法,我们可以解决三种类型的度量约束问题的大型问题实例:一般体重相关聚类,度量近距离和度量学习;在每种情况下,就CPU时间和问题尺寸而言,超越了艺术方法的表现。
translated by 谷歌翻译
我们提出了一个基于预测校正范式的统一框架,用于在原始和双空间中的预测校正范式。在此框架中,以固定的间隔进行了连续变化的优化问题,并且每个问题都通过原始或双重校正步骤近似解决。通过预测步骤的输出,该解决方案方法是温暖启动的,该步骤的输出可以使用过去的信息解决未来问题的近似。在不同的假设集中研究并比较了预测方法。该框架涵盖的算法的示例是梯度方法的时变版本,分裂方法和著名的乘数交替方向方法(ADMM)。
translated by 谷歌翻译
Two-level stochastic optimization formulations have become instrumental in a number of machine learning contexts such as continual learning, neural architecture search, adversarial learning, and hyperparameter tuning. Practical stochastic bilevel optimization problems become challenging in optimization or learning scenarios where the number of variables is high or there are constraints. In this paper, we introduce a bilevel stochastic gradient method for bilevel problems with lower-level constraints. We also present a comprehensive convergence theory that covers all inexact calculations of the adjoint gradient (also called hypergradient) and addresses both the lower-level unconstrained and constrained cases. To promote the use of bilevel optimization in large-scale learning, we introduce a practical bilevel stochastic gradient method (BSG-1) that does not require second-order derivatives and, in the lower-level unconstrained case, dismisses any system solves and matrix-vector products.
translated by 谷歌翻译
许多实际优化问题涉及不确定的参数,这些参数具有概率分布,可以使用上下文特征信息来估算。与首先估计不确定参数的分布然后基于估计优化目标的标准方法相反,我们提出了一个\ textIt {集成条件估计 - 优化}(ICEO)框架,该框架估计了随机参数的潜在条件分布同时考虑优化问题的结构。我们将随机参数的条件分布与上下文特征之间的关系直接建模,然后以与下游优化问题对齐的目标估算概率模型。我们表明,我们的ICEO方法在适度的规律性条件下渐近一致,并以概括范围的形式提供有限的性能保证。在计算上,使用ICEO方法执行估计是一种非凸面且通常是非差异的优化问题。我们提出了一种通用方法,用于近似从估计的条件分布到通过可区分函数的最佳决策的潜在非差异映射,这极大地改善了应用于非凸问题的基于梯度的算法的性能。我们还提供了半代理案例中的多项式优化解决方案方法。还进行了数值实验,以显示我们在不同情况下的方法的经验成功,包括数据样本和模型不匹配。
translated by 谷歌翻译