近年来,电力发电已导致美国超过四分之一的温室气体排放。将大量的可再生能源整合到电网中可能是减少电网中碳排放并减缓气候变化的最易于使用的方法。不幸的是,风和太阳能等最容易获得的可再生能源是高度波动的,因此给电网操作带来了很多不确定性,并挑战了现有的优化和控制政策。偶然受限的交流电(AC)最佳功率流(OPF)框架找到了最低成本生成的调度,以保持较低的概率将电网操作保持在安全限制之内。不幸的是,AC-OPF问题的偶然性约束扩展是非登记,计算挑战性的,需要了解系统参数以及有关可再生分布行为的其他假设。已知的线性和凸近似于上述问题,尽管可以进行操作,但对于操作实践来说太保守了,并且不考虑系统参数的不确定性。本文提出了一种基于高斯流程(GP)回归以缩小此差距的替代数据驱动方法。 GP方法学习了一个简单但非凸的数据驱动的近似值,可以包含不确定性输入的交流功率流程。然后,通过考虑输入和参数不确定性,将后者用于有效地确定CC-OPF的解。在众多IEEE测试案例中,说明了使用不同近似值的GP不确定性传播的拟议方法的实际效率。
translated by 谷歌翻译
交替的电流(AC)偶然受限的最佳功率流(CC-OPF)问题解决了发电不确定性下发电和交付的经济效率。由于可再生能源量大量,后者是现代电网的内在固有的。尽管取得了学术上的成功,但AC CC-OPF问题是高度非线性和计算要求的,这限制了其实际影响。为了改善AC-OPF问题的复杂性/准确性权衡,本文提出了一种快速数据驱动的设置,该设置使用稀疏和混合的高斯流程(GP)框架,以模拟具有输入不确定性的功率流程方程。我们提倡通过数值研究对拟议方法的效率,而与最新方法相比,多个IEEE测试用例的效率快两倍,更准确。
translated by 谷歌翻译
由于负载和可再生能源的不确定性日益增长,对现代电网的安全和最佳运行产生了突出的挑战。随机最佳功率流(SOPF)制剂提供了一种通过计算在不确定性下保持可行性的派遣决策和控制政策来处理这些不确定性的机制。大多数SOPF配方考虑了简单的控制策略,例如数学上简单的仿射策略,类似于当前实践中使用的许多策略。通过机器学习(ML)算法的功效和一般控制政策的潜在好处的效果,我们提出了一个深度神经网络(DNN)基础的政策,该政策是实时预测发电机调度决策的不确定。使用解决SOPF的随机原始双重更新来学习DNN的权重,而无需先前一代训练标签,并且可以明确地解释SOPF中的可行性约束。 DNN政策对更简单的政策和它们在执行安全限制和产生附近的近最佳解决方案中的功效的优点在于机会在许多测试用例上受到限制的制定的情况下。
translated by 谷歌翻译
Non-convex AC optimal power flow (AC-OPF) is a fundamental optimization problem in power system analysis. The computational complexity of conventional solvers is typically high and not suitable for large-scale networks in real-time operation. Hence, deep learning based approaches have gained intensive attention to conduct the time-consuming training process offline. Supervised learning methods may yield a feasible AC-OPF solution with a small optimality gap. However, they often need conventional solvers to generate the training dataset. This paper proposes an end-to-end unsupervised learning based framework for AC-OPF. We develop a deep neural network to output a partial set of decision variables while the remaining variables are recovered by solving AC power flow equations. The fast decoupled power flow solver is adopted to further reduce the computational time. In addition, we propose using a modified augmented Lagrangian function as the training loss. The multipliers are adjusted dynamically based on the degree of constraint violation. Extensive numerical test results corroborate the advantages of our proposed approach over some existing methods.
translated by 谷歌翻译
在不确定性下,协调逆变器是用于集成可再生能源在配电网格中的缺点。除非频繁地呼吸折叠速度,否则控制逆变器给定近似网格条件或其代理成为一个关键规范。虽然深神经网络(DNN)可以学习最佳的逆变时间表,但保证可行性在很大程度上是难以捉摸的。而不是培训DNN以模仿已经计算的最佳功率流量(OPF)解决方案,而是将基于DNN的变频器策略集成到OPF中。所提出的DNN通过两个OPF替代方案培训,该替代方案限制了平均电压偏差,并且作为机会约束的凸起限制。训练有素的DNN可以由当前网格条件的部分,嘈杂或代理描述符驱动。当OPF必须为不可观察的馈线解决OPF而言,这很重要。假设网络模型是已知的,通过反向传播训练,并且在区分AC电流方程时训练。否则,提出了一种梯度的变体。后者当逆变器由具有仅访问电源流求解器或馈线的数字双胞胎的访问的聚合器控制时相关。数值测试将基于DNN的变频器控制方案与最佳逆变器设定值的优化和可行性进行比较。
translated by 谷歌翻译
各种科学和工程领域使用参数化机制模型。工程师和科学家通常可以假设几个竞争模型来解释特定的过程或现象。考虑一个模特歧视设置,我们希望找到最佳机械,动态模型候选者和最佳模型参数估计。通常,若干竞争机械模型可以解释可用数据,因此通过找到最大化模型预测发散的实验设置,可以通过找到最大化模型预测发散的实验设置来实现最佳地收集额外数据的动态实验。我们争论文献中有两种主要方法,用于解决最佳设计问题:(i)分析方法,使用线性和高斯近似来找设计目标的闭合表达式,以及(ii)数据驱动方法,这通常依赖于计算密集的蒙特卡罗技术。 olofsson等人。 (ICML 35,2018)介绍了高斯工艺(GP)替代模型来杂交的分析和数据驱动方法,这允许计算的实验设计,以识别黑盒式模型。在这项研究中,我们证明我们可以扩展现有的动态实验设计方法,以纳入更广泛的问题不确定性。我们还延伸了Olofsson等人。 (2018)使用GP代理模型来辨别动态黑盒式模型的方法。我们在文献中的着名案例研究中评估了我们的方法,并探讨了使用GP代理到近似基于梯度的方法的后果。
translated by 谷歌翻译
本文介绍了一个框架,以捕获先前棘手的优化约束,并通过使用神经网络将其转换为混合构成线性程序。我们编码以可拖动和顽固的约束为特征的优化问题的可行空间,例如微分方程,转到神经网络。利用神经网络的精确混合重新印象,我们解决了混合企业线性程序,该程序将解决方案准确地近似于最初棘手的非线性优化问题。我们将方法应用于交流最佳功率流问题(AC-OPF),其中直接包含动态安全性约束可使AC-OPF棘手。我们提出的方法具有比传统方法更明显的可扩展性。我们展示了考虑N-1安全性和小信号稳定性的电力系统操作方法,展示了如何有效地获得成本优势的解决方案,同时满足静态和动态安全性约束。
translated by 谷歌翻译
可再生能源世代的高百分比渗透对电力系统引起了重大不确定性。它要求网格操作员更频繁地解决替代电流最佳功率流(AC-OPF)问题,以便在传输和分配网格中进行经济和可靠的操作。在本文中,我们开发了一种Deep神经网络(DNN)方法,称为DEEPOPF,用于在传统求解器使用的时间中解决AC-OPF问题。应用机器学习技术解决AC-OPF问题的关键困难在于确保获得的解决方案尊重平等和不平等的物理和操作约束。在[1],[2]中概括了2阶段的过程,DEEPOPF首先训练DNN模型,以预测一组独立的操作变量,然后通过求解功率流方程直接计算剩余的可靠性变量。这种方法不仅保留了平衡平等的限制,而且还减少了DNN预测的变量数量,从而减少了所需的神经元和训练数据的数量。然后,DeePOPF在培训过程中采用零级梯度估计技术采用惩罚方法,以保留其余的不平等约束。作为另一个贡献,我们根据所需的近似精度来驱动调整DNN的大小的条件,该准确性测量了DNN的概括能力。它为使用DNN解决AC-OPF问题提供了理论上的理由。 IEEE 30/118/300-BU和合成2000总线测试用例的仿真结果表明,与最先进的求解器相比,DEEPOPF最多将计算时间速度高达两个数量级,费用为费用$ <$ <$ 0.1%的成本差异。
translated by 谷歌翻译
要将计算负担从实时到延迟关键电源系统应用程序的脱机,最近的作品招待使用深神经网络(DNN)的想法来预测一次呈现的AC最佳功率流(AC-OPF)的解决方案负载需求。随着网络拓扑可能改变的,以样本有效的方式训练该DNN成为必需品。为提高数据效率,这项工作利用了OPF数据不是简单的训练标签,而是构成参数优化问题的解决方案。因此,我们倡导培训一个灵敏度通知的DNN(SI-DNN),不仅可以匹配OPF优化器,而且还匹配它们的部分导数相对于OPF参数(负载)。结果表明,所需的雅可比矩阵确实存在于温和条件下,并且可以从相关的原始/双解决方案中容易地计算。所提出的Si-DNN与广泛的OPF溶剂兼容,包括非凸出的二次约束的二次程序(QCQP),其半纤维程序(SDP)放松和MatPower;虽然Si-DNN可以在其他学习到OPF方案中无缝集成。三个基准电源系统的数值测试证实了SI-DNN在传统训练的DNN上预测的OPF解决方案的高级泛化和约束满意度,尤其是在低数据设置中。
translated by 谷歌翻译
在这项工作中,我们提出了一个新的高斯进程回归(GPR)方法:物理信息辅助Kriging(PHIK)。在标准数据驱动的Kriging中,感兴趣的未知功能通常被视为高斯过程,其中具有假定的静止协方差,其具有从数据估计的QuandEdmente。在PHIK中,我们从可用随机模型的实现中计算平均值和协方差函数,例如,从管理随机部分微分方程解决方案的实现。这种构造的高斯过程通常是非静止的,并且不承担特定形式的协方差。我们的方法避免了数据驱动的GPR方法中的优化步骤来识别超参数。更重要的是,我们证明了确定性线性操作员形式的物理约束在得到的预测中保证。当在随机模型实现中包含错误时,我们还提供了保留物理约束时的误差估计。为了降低获取随机模型的计算成本,我们提出了一种多级蒙特卡罗估计的平均和协方差函数。此外,我们介绍了一种有源学习算法,指导选择附加观察位置。 PHIK的效率和准确性被证明重建部分已知的修饰的Branin功能,研究三维传热问题,并从稀疏浓度测量学习保守的示踪剂分布。
translated by 谷歌翻译
本文提出了一类新的实时优化方案,以克服不确定过程的系统模型不匹配。这项工作的新颖性在于在贝叶斯优化框架内集成无衍生优化的优化方案和多保真高斯进程。所提出的方案对随机系统进行了两个高斯过程,通过测量来模拟(已知)过程模型,另一个,真实系统。以这种方式,可以通过模型获得低保真度样本,而通过系统的测量获得高保真样本。该框架在非参数时捕获系统的行为,同时通过采集函数驾驶探索。使用高斯进程代表系统的好处是能够实时地执行不确定性量化,并允许有机会限制以满足高信任。这导致一种实用的方法,其在数值案例研究中示出,包括半批量光生物反应器优化问题。
translated by 谷歌翻译
本文考虑了最佳功率流(OPF)的优化代理,即近似于OPF的输入/输出关系的机器学习模型。最近的工作重点是表明此类代理可能具有高忠诚。但是,他们的培训需要大量数据,每个实例都需要(离线)解决输入分布样本的OPF。为了满足市场清除应用程序的要求,本文提出了积极的桶装采样(ABS),这是一个新型的活跃学习框架,旨在培训在一个时间限制内培训最佳OPF代理。ABS将输入分布分配到存储桶中,并使用采集函数来确定接下来的何处。它依靠自适应学习率,随着时间的推移会增加和降低。实验结果证明了ABS的好处。
translated by 谷歌翻译
对非线性不确定系统的控制是机器人技术领域的常见挑战。非线性潜在力模型结合了以高斯流程为特征的潜在不确定性,具有有效代表此类系统的希望,我们专注于这项工作的控制设计。为了实现设计,我们采用了高斯过程的状态空间表示来重塑非线性潜在力模型,从而建立了同时预测未来状态和不确定性的能力。使用此功能,制定了随机模型预测控制问题。为了得出问题的计算算法,我们使用基于方案的方法来制定随机优化的确定性近似。我们通过基于自动驾驶汽车的运动计划的仿真研究评估了最终方案的模型预测控制方法,该研究表现出很大的有效性。拟议的方法可以在其他各种机器人应用中找到前瞻性使用。
translated by 谷歌翻译
越来越多的间歇可再生能源的整合,特别是在分配水平,需要对TheGrid的知识而设计的先进规划和优化方法,特别是捕获电网拓扑和线参数的进入矩阵。然而,对进入矩阵的可靠估计可以丢失或迅速地过时用于时间变化网格。在这项工作中,我们提出了利用从微量PMU收集的电压和电流测量的数据驱动的识别方法。更确切地说,我们首先呈现最大的似然方法,然后朝着贝叶斯框架移动,利用最大后验估计的原则。与大多数现有的Con-Tribution相比,我们的方法不仅是电压和电流数据上的测量噪声中的因素,而且还能够利用可用的先验信息,例如稀疏性模式和已知的列表参数。在基准案件上进行的模拟表明,与储藏仪相比,我们的方法可以实现明显更大的准确性。
translated by 谷歌翻译
强化学习(RL)控制器在控制社区中产生了兴奋。 RL控制器相对于现有方法的主要优点是它们能够优化不确定的系统,独立于明确假设过程不确定性。最近对工程应用的关注是针对安全RL控制器的发展。以前的作品已经提出了通过从随机模型预测控制领域的限制收紧来解释约束满足的方法。在这里,我们将这些方法扩展到植物模型不匹配。具体地,我们提出了一种利用离线仿真模型的高斯过程的数据驱动方法,并使用相关的后部不确定预测来解释联合机会限制和植物模型不匹配。该方法通过案例研究反对非线性模型预测控制的基准测试。结果证明了方法理解过程不确定性的能力,即使在植物模型错配的情况下也能满足联合机会限制。
translated by 谷歌翻译
增强现有传输线是对抗传输拥塞并保证传输安全性随需求增加并增强可再生能源的有用工具。这项研究涉及选择其容量应扩大的线路的选择,以及从独立系统操作员(ISO)的角度来看,通过考虑传输线约束以及发电和需求平衡条件,并结合坡道 - 上升和启动坡道率,关闭坡道速率,坡度降低率限制以及最小降低时间。为此,我们开发了ISO单元承诺和经济调度模型,并将其作为混合整数线性编程(MILP)问题的右侧不确定性多个参数分析。我们首先放松二进制变量,以连续变量并采用拉格朗日方法和Karush-Kuhn-Tucker条件,以获得最佳的解决方案(最佳决策变量和目标函数)以及与主动和无效约束相关的关键区域。此外,我们通过确定每个节点处的问题上限,然后比较上限和下限之间的差异,并在决策制造商中达到近似最佳解决方案,从而扩展传统分支和界限方法,以解决大规模MILP问题。可耐受的误差范围。另外,目标函数在每行参数上的第一个衍生物用于告知各行的选择,以简化拥塞和最大化社会福利。最后,通过平衡目标函数的成本率和阵容升级成本来选择容量升级的量。我们的发现得到了数值模拟的支持,并为传输线计划提供了决策指导。
translated by 谷歌翻译
本文研究了如何训练直接近似约束优化问题的最佳解决方案的机器学习模型。这是在约束下的经验风险最小化,这是具有挑战性的,因为培训必须平衡最佳和可行性条件。监督学习方法通​​常通过在大量预处理实例中训练模型来应对这一挑战。本文采用了不同的途径,并提出了原始偶尔学习的想法(PDL),这是一种自我监督的培训方法,不需要一组预处理的实例或用于培训和推理的优化求解器。取而代之的是,PDL模拟了增强拉格朗日方法(ALM)的轨迹,并共同训练原始和双神经网络。作为一种原始的双重方法,PDL使用用于训练原始网络的损失函数中的约束项的实例特定惩罚。实验表明,在一组非线性优化基准上,PDL通常表现出可忽略的约束违规和较小的最佳差距,并且非常接近ALM优化。与现有方法相比,PDL在最佳差距,约束违规和培训时间方面还表现出改善或类似的性能。
translated by 谷歌翻译
考虑了建立UNKONWN地面真相函数值的样本外界限的问题。内核及其相关的希尔伯特空间是本文所采用的主要形式主义,以及一个观察模型,在该模型中,输出被有限的测量噪声损坏。噪声可以源于任何紧凑的分布,并且没有对可用数据进行独立假设。在这种情况下,我们显示计算紧密的,有限样本的不确定性范围等于求解参数四次约束线性程序。接下来,建立了我们方法的属性,并研究了其与另一种方法的关系。提出了数值实验,以说明如何在许多情况下应用理论,并将其与其他封闭形式的替代方案进行对比。
translated by 谷歌翻译
Machine learning (ML) algorithms are remarkably good at approximating complex non-linear relationships. Most ML training processes, however, are designed to deliver ML tools with good average performance, but do not offer any guarantees about their worst-case estimation error. For safety-critical systems such as power systems, this places a major barrier for their adoption. So far, approaches could determine the worst-case violations of only trained ML algorithms. To the best of our knowledge, this is the first paper to introduce a neural network training procedure designed to achieve both a good average performance and minimum worst-case violations. Using the Optimal Power Flow (OPF) problem as a guiding application, our approach (i) introduces a framework that reduces the worst-case generation constraint violations during training, incorporating them as a differentiable optimization layer; and (ii) presents a neural network sequential learning architecture to significantly accelerate it. We demonstrate the proposed architecture on four different test systems ranging from 39 buses to 162 buses, for both AC-OPF and DC-OPF applications.
translated by 谷歌翻译
Partial differential equations (PDEs) are widely used for description of physical and engineering phenomena. Some key parameters involved in PDEs, which represents certain physical properties with important scientific interpretations, are difficult or even impossible to be measured directly. Estimation of these parameters from noisy and sparse experimental data of related physical quantities is an important task. Many methods for PDE parameter inference involve a large number of evaluations of numerical solution of PDE through algorithms such as finite element method, which can be time-consuming especially for nonlinear PDEs. In this paper, we propose a novel method for estimating unknown parameters in PDEs, called PDE-Informed Gaussian Process Inference (PIGPI). Through modeling the PDE solution as a Gaussian process (GP), we derive the manifold constraints induced by the (linear) PDE structure such that under the constraints, the GP satisfies the PDE. For nonlinear PDEs, we propose an augmentation method that transfers the nonlinear PDE into an equivalent PDE system linear in all derivatives that our PIGPI can handle. PIGPI can be applied to multi-dimensional PDE systems and PDE systems with unobserved components. The method completely bypasses the numerical solver for PDE, thus achieving drastic savings in computation time, especially for nonlinear PDEs. Moreover, the PIGPI method can give the uncertainty quantification for both the unknown parameters and the PDE solution. The proposed method is demonstrated by several application examples from different areas.
translated by 谷歌翻译