当前的能源转变促进了电力和天然气系统之间的运行融合。在这个方向上,改善协调能力和气体调度内的非凸天然气体流动动力学的建模至关重要。在这项工作中,我们提出了一种神经网络受限的优化方法,其中包括基于监督机器学习的韦茅斯方程的回归模型。 Weymouth方程将气体流动与每个管道的入口和出口压力通过二次平等,该二次相等性,该平等被神经网络捕获。后者是通过可处理的混合插入线性程序编码为约束集的。此外,我们提出的框架能够考虑双向性,而无需求助于复杂且可能不准确的凸化方法。我们通过引入激活函数的重新制定来进一步增强我们的模型,从而提高计算效率。一项基于现实生活中的比利时力量和气体系统的广泛数值研究表明,所提出的方法在准确性和障碍方面产生了有希望的结果。
translated by 谷歌翻译
本文介绍了一个框架,以捕获先前棘手的优化约束,并通过使用神经网络将其转换为混合构成线性程序。我们编码以可拖动和顽固的约束为特征的优化问题的可行空间,例如微分方程,转到神经网络。利用神经网络的精确混合重新印象,我们解决了混合企业线性程序,该程序将解决方案准确地近似于最初棘手的非线性优化问题。我们将方法应用于交流最佳功率流问题(AC-OPF),其中直接包含动态安全性约束可使AC-OPF棘手。我们提出的方法具有比传统方法更明显的可扩展性。我们展示了考虑N-1安全性和小信号稳定性的电力系统操作方法,展示了如何有效地获得成本优势的解决方案,同时满足静态和动态安全性约束。
translated by 谷歌翻译
Machine learning (ML) algorithms are remarkably good at approximating complex non-linear relationships. Most ML training processes, however, are designed to deliver ML tools with good average performance, but do not offer any guarantees about their worst-case estimation error. For safety-critical systems such as power systems, this places a major barrier for their adoption. So far, approaches could determine the worst-case violations of only trained ML algorithms. To the best of our knowledge, this is the first paper to introduce a neural network training procedure designed to achieve both a good average performance and minimum worst-case violations. Using the Optimal Power Flow (OPF) problem as a guiding application, our approach (i) introduces a framework that reduces the worst-case generation constraint violations during training, incorporating them as a differentiable optimization layer; and (ii) presents a neural network sequential learning architecture to significantly accelerate it. We demonstrate the proposed architecture on four different test systems ranging from 39 buses to 162 buses, for both AC-OPF and DC-OPF applications.
translated by 谷歌翻译
增强现有传输线是对抗传输拥塞并保证传输安全性随需求增加并增强可再生能源的有用工具。这项研究涉及选择其容量应扩大的线路的选择,以及从独立系统操作员(ISO)的角度来看,通过考虑传输线约束以及发电和需求平衡条件,并结合坡道 - 上升和启动坡道率,关闭坡道速率,坡度降低率限制以及最小降低时间。为此,我们开发了ISO单元承诺和经济调度模型,并将其作为混合整数线性编程(MILP)问题的右侧不确定性多个参数分析。我们首先放松二进制变量,以连续变量并采用拉格朗日方法和Karush-Kuhn-Tucker条件,以获得最佳的解决方案(最佳决策变量和目标函数)以及与主动和无效约束相关的关键区域。此外,我们通过确定每个节点处的问题上限,然后比较上限和下限之间的差异,并在决策制造商中达到近似最佳解决方案,从而扩展传统分支和界限方法,以解决大规模MILP问题。可耐受的误差范围。另外,目标函数在每行参数上的第一个衍生物用于告知各行的选择,以简化拥塞和最大化社会福利。最后,通过平衡目标函数的成本率和阵容升级成本来选择容量升级的量。我们的发现得到了数值模拟的支持,并为传输线计划提供了决策指导。
translated by 谷歌翻译
由于固有的DNN预测误差,确保解决方案可行性是开发用于解决受约束优化问题的深度神经网络(DNN)方案的关键挑战。在本文中,我们提出了一种“预防性学习”的框架,以系统地保证DNN解决方案可行性的凸起约束和一般客观函数的问题。我们首先应用预测和重建设计,不仅保证平等约束,还可以利用它们来减少DNN预测的变量的数量。然后,作为关键方法贡献,我们系统地校准了DNN训练中使用的不等式约束,从而预测预测误差并确保所得到的解决方案仍然可行。我们表征校准量大和DNN尺寸,足以确保通用可行性。我们提出了一种新的敌对样本意识到培训算法,以改善DNN的最优性能而不牺牲可行性保证。总的来说,该框架提供了两个DNN。表征足够的DNN大小的第一个可以保证通用可行性,而来自所提出的培训算法的另一个进一步提高了最优性并同时保持DNN的通用可行性。我们应用预防性学习框架来开发Deepopf +,以解决网格运行中的基本DC最佳功率流量问题。它在确保在轻负载和重载制度中的可行性和获得一致的理想加速性能时,它可以改善现有的基于DNN的方案。仿真结果对IEEE案例-30 / 118/300测试用例显示DeepoPF +与最优性损失的最优损失和最高幅度计算加速度为100 \%$ 0.5%的可行解决方案,相比之下艺术迭代求解器。
translated by 谷歌翻译
可再生能源世代的高百分比渗透对电力系统引起了重大不确定性。它要求网格操作员更频繁地解决替代电流最佳功率流(AC-OPF)问题,以便在传输和分配网格中进行经济和可靠的操作。在本文中,我们开发了一种Deep神经网络(DNN)方法,称为DEEPOPF,用于在传统求解器使用的时间中解决AC-OPF问题。应用机器学习技术解决AC-OPF问题的关键困难在于确保获得的解决方案尊重平等和不平等的物理和操作约束。在[1],[2]中概括了2阶段的过程,DEEPOPF首先训练DNN模型,以预测一组独立的操作变量,然后通过求解功率流方程直接计算剩余的可靠性变量。这种方法不仅保留了平衡平等的限制,而且还减少了DNN预测的变量数量,从而减少了所需的神经元和训练数据的数量。然后,DeePOPF在培训过程中采用零级梯度估计技术采用惩罚方法,以保留其余的不平等约束。作为另一个贡献,我们根据所需的近似精度来驱动调整DNN的大小的条件,该准确性测量了DNN的概括能力。它为使用DNN解决AC-OPF问题提供了理论上的理由。 IEEE 30/118/300-BU和合成2000总线测试用例的仿真结果表明,与最先进的求解器相比,DEEPOPF最多将计算时间速度高达两个数量级,费用为费用$ <$ <$ 0.1%的成本差异。
translated by 谷歌翻译
能源部门的深度脱碳将需要大量的随机可再生能源渗透和大量的网格资产协调。对于面对这种变化而负责维持电网稳定性和安全性的电力系统运营商来说,这是一个具有挑战性的范式。凭借从复杂数据集中学习并提供有关快速时间尺度的预测解决方案的能力,机器学习(ML)得到了很好的选择,可以帮助克服这些挑战,因为在未来几十年中,电力系统转变。在这项工作中,我们概述了与构建可信赖的ML模型相关的五个关键挑战(数据集生成,数据预处理,模型培训,模型评估和模型嵌入),这些模型从基于物理的仿真数据中学习。然后,我们演示如何将单个模块连接在一起,每个模块都克服了各自的挑战,在机器学习管道中的顺序阶段,如何有助于提高训练过程的整体性能。特别是,我们实施了通过反馈连接学习管道的不同元素的方法,从而在模型培训,绩效评估和重新训练之间“关闭循环”。我们通过学习与拟议的北海风能中心系统的详细模型相关的N-1小信号稳定性边缘来证明该框架,其组成模块的有效性及其反馈连接。
translated by 谷歌翻译
多阶段随机线性问题(MSLP)的解决方案代表了许多应用程序的挑战。长期水热调度计划(LHDP)在影响全球电力市场,经济和自然资源的现实世界中实现了这一挑战。没有用于MSLP的封闭式解决方案,并且具有高质量的非预期策略的定义是至关重要的。线性决策规则(LDR)提供了一个有趣的基于模拟的框架,可通过两阶段随机模型为MSLP找到高质量的策略。但是,在实际应用中,使用LDR时要估计的参数数量可能接近或高于样本平均近似问题的场景数量,从而在样本外产生样本外的过度效果和差的表现不佳模拟。在本文中,我们提出了一个新型的正则LDR来基于Adalasso(自适应最少的绝对收缩和选择算子)求解MSLP。目的是使用高维线性回归模型中所研究的简约原理,以获得应用于MSLP的LDR的更好的样本外部性能。计算实验表明,使用经典的非规范LDR来求解LHDP时,过度合适的威胁是不可忽略的,这是研究最多的MSLP之一,其中具有相关应用在行业中。我们的分析强调了拟议框架与非规范化基准相比的以下好处:1)非零系数的数量显着减少(模型简约),2)2)大幅度降低样本外评估的成本降低, 3)改善了现货价格概况。
translated by 谷歌翻译
在排放限制下优化的气体网络规划优化优先考虑最少$ _2 $强度的天然气供应。由于此问题包括复杂的气流物理定律,因此标准优化求解器无法保证融合与可行解决方案。为了解决这个问题,我们开发了一个输入 - 控制神经网络(ICNN)辅助优化例程,该程序结合了一组训练有素的ICNN,以高精度近似于气流方程。比利时气体网络上的数值测试表明,ICNN辅助优化主导了非凸和基于弛豫的求解器,其最佳增长较大,与更严格的发射目标有关。此外,每当非凸线求解器失败时,ICNN ADED优化为网络计划提供了可行的解决方案。
translated by 谷歌翻译
许多现实生活中的优化问题通常包含一个或多个没有明确公式的约束或目标。但是,如果可用数据,这些数据可用于学习约束。清楚地看到了这种方法的好处,但是需要以结构化的方式进行此过程。因此,本文提供了一个使用约束学习(OCL)进行优化的框架,我们认为这将有助于正式化和指导从数据中学习的过程。该框架包括以下步骤:(i)设置概念优化模型,(ii)数据收集和预处理,(iii)选择和培训预测模型,(iv)解决优化模型以及(v)验证和验证和验证和验证改进优化模型。然后,我们根据该框架回顾了最近的OCL文献,并强调了当前的趋势以及未来研究的领域。
translated by 谷歌翻译
安全约束的经济调度(SCED)是传输系统运营商(TSO)的基本优化模型,以清除实时能源市场,同时确保电网的可靠操作。在不断增长的运营不确定性的背景下,由于可再生发电机和分布式能源资源的渗透率增加,运营商必须实时监控风险,即,他们必须在负载和可再生生产的各种变化下快速评估系统的行为。遗憾的是,鉴于实时操作的严格约束,系统地解决了每个这样的场景的优化问题。为了克服这种限制,本文提出了学习SCED,即机器学习(ML)模型的优化代理,其可以预测用于以毫秒为单位的最佳解决方案。本文提出了对MISO市场清算优化优化的原则性分析,提出了一种新颖的ML管道,解决了学习SCES解决方案的主要挑战,即负载,可再生产量和生产成本以及组合结构的变化,以及组合结构承诺决定。还提出了一种新的分类 - 然后回归架构,以进一步捕获SCED解决方案的行为。在法国传输系统上报告了数值实验,并展示了该方法在与实时操作兼容的时间范围内生产的能力,精确的优化代理产生相对误差低于0.6 \%$。
translated by 谷歌翻译
最佳功率流(OPF)是电力系统中的一个基本问题。它是计算的具有挑战性,最近的研究已经建议使用深神经网络(DNN)在与通过经典优化方法获得的那些相比时在大大降低的运行时找到OPF近似。虽然这些作品表明,令人鼓舞的准确性和运行时的结果,但对于为什么这些模型可以准确地预测OPF解决方案以及宽大的鲁棒性,而令人愉快的结果。本文提供了解决这种知识差距的前进。该纸张将发电机输出的波动性连接到学习模型近似对象的能力,它阐明了影响DNN模型的特征来学习良好的预测因子,并提出了一种利用此目的观察的新模型纸张生产精确且强大的opf预测。
translated by 谷歌翻译
物理信息的神经网络(PINN)是神经网络(NNS),它们作为神经网络本身的组成部分编码模型方程,例如部分微分方程(PDE)。如今,PINN是用于求解PDE,分数方程,积分分化方程和随机PDE的。这种新颖的方法已成为一个多任务学习框架,在该框架中,NN必须在减少PDE残差的同时拟合观察到的数据。本文对PINNS的文献进行了全面的综述:虽然该研究的主要目标是表征这些网络及其相关的优势和缺点。该综述还试图将出版物纳入更广泛的基于搭配的物理知识的神经网络,这些神经网络构成了香草·皮恩(Vanilla Pinn)以及许多其他变体,例如物理受限的神经网络(PCNN),各种HP-VPINN,变量HP-VPINN,VPINN,VPINN,变体。和保守的Pinn(CPINN)。该研究表明,大多数研究都集中在通过不同的激活功能,梯度优化技术,神经网络结构和损耗功能结构来定制PINN。尽管使用PINN的应用范围广泛,但通过证明其在某些情况下比有限元方法(FEM)等经典数值技术更可行的能力,但仍有可能的进步,最著名的是尚未解决的理论问题。
translated by 谷歌翻译
我们考虑非线性优化问题,涉及神经网络代表代理模型。我们首先展示了如何直接将神经网络评估嵌入优化模型中,突出难以防止收敛的方法,然后表征这些模型的平稳性。然后,我们在具有Relu激活的前馈神经网络的特定情况下存在两种替代配方,其具有recu激活:作为混合整数优化问题,作为具有互补限制的数学程序。对于后一种制剂,我们证明了在该问题的点处的有同性,对应于嵌入式制剂的实质性。这些配方中的每一个都可以用最先进的优化方法来解决,并且我们展示了如何为这些方法获得良好的初始可行解决方案。我们将三种实际应用的配方进行比较,在燃烧发动机的设计和控制中产生的三种实际应用,在对分类器网络的对抗攻击中产生的产生,以及在油井网中的最佳流动确定。
translated by 谷歌翻译
到2035年,美国电力部门的转型正在进行中,以实现100%无碳污染的电力,以实现这一目标,同时保持安全可靠的电网,需要新的操作范式,以快速准确的决策来制定新的操作范式在动态和不确定的环境中。我们为动态网格重新配置(PHML-DYR)的决策提出了一个新颖的物理知识的机器学习框架,这是电源系统中的关键任务。动态重新配置(DYR)是一个动态设置开关状态的过程,从而导致最佳网格拓扑,从而最大程度地减少线路损耗。为了解决由于决策变量的混合性质而导致的NP硬度的潜在计算复杂性,我们建议使用物理信息信息的ML(PHML),该物理信息(PHML)将操作约束以及拓扑结构和连接性约束集成到神经网络框架中。我们的PHML方法学会同时优化网格拓扑和发电机调度,以满足负载,提高效率并保持在安全的操作范围内。我们证明了PHML-DYR在规范网格上的有效性,显示电力损耗的减少23%,并改善了电压曲线。我们还显示了使用PHML-DYR的数量级以及训练时间的约束违规行为的减少。
translated by 谷歌翻译
由于负载和可再生能源的不确定性日益增长,对现代电网的安全和最佳运行产生了突出的挑战。随机最佳功率流(SOPF)制剂提供了一种通过计算在不确定性下保持可行性的派遣决策和控制政策来处理这些不确定性的机制。大多数SOPF配方考虑了简单的控制策略,例如数学上简单的仿射策略,类似于当前实践中使用的许多策略。通过机器学习(ML)算法的功效和一般控制政策的潜在好处的效果,我们提出了一个深度神经网络(DNN)基础的政策,该政策是实时预测发电机调度决策的不确定。使用解决SOPF的随机原始双重更新来学习DNN的权重,而无需先前一代训练标签,并且可以明确地解释SOPF中的可行性约束。 DNN政策对更简单的政策和它们在执行安全限制和产生附近的近最佳解决方案中的功效的优点在于机会在许多测试用例上受到限制的制定的情况下。
translated by 谷歌翻译
神经网络已广泛应用于垃圾邮件和网络钓鱼检测,入侵预防和恶意软件检测等安全应用程序。但是,这种黑盒方法通常在应用中具有不确定性和不良的解释性。此外,神经网络本身通常容易受到对抗攻击的影响。由于这些原因,人们对可信赖和严格的方法有很高的需求来验证神经网络模型的鲁棒性。对抗性的鲁棒性在处理恶意操纵输入时涉及神经网络的可靠性,是安全和机器学习中最热门的主题之一。在这项工作中,我们在神经网络的对抗性鲁棒性验证中调查了现有文献,并在机器学习,安全和软件工程领域收集了39项多元化研究工作。我们系统地分析了它们的方法,包括如何制定鲁棒性,使用哪种验证技术以及每种技术的优势和局限性。我们从正式验证的角度提供分类学,以全面理解该主题。我们根据财产规范,减少问题和推理策略对现有技术进行分类。我们还展示了使用样本模型在现有研究中应用的代表性技术。最后,我们讨论了未来研究的开放问题。
translated by 谷歌翻译
电价是影响所有市场参与者决策的关键因素。准确的电价预测非常重要,并且由于各种因素,电价高度挥发性,电价也非常具有挑战性。本文提出了一项综合的长期经常性卷积网络(ILRCN)模型,以预测考虑到市场价格的大多数贡献属性的电力价格。所提出的ILRCN模型将卷积神经网络和长短期记忆(LSTM)算法的功能与所提出的新颖的条件纠错项相结合。组合的ILRCN模型可以识别输入数据内的线性和非线性行为。我们使用鄂尔顿批发市场价格数据以及负载型材,温度和其他因素来说明所提出的模型。使用平均绝对误差和准确性等性能/评估度量来验证所提出的ILRCN电价预测模型的性能。案例研究表明,与支持向量机(SVM)模型,完全连接的神经网络模型,LSTM模型和LRCN模型,所提出的ILRCN模型在电价预测中是准确和有效的电力价格预测。
translated by 谷歌翻译
要将计算负担从实时到延迟关键电源系统应用程序的脱机,最近的作品招待使用深神经网络(DNN)的想法来预测一次呈现的AC最佳功率流(AC-OPF)的解决方案负载需求。随着网络拓扑可能改变的,以样本有效的方式训练该DNN成为必需品。为提高数据效率,这项工作利用了OPF数据不是简单的训练标签,而是构成参数优化问题的解决方案。因此,我们倡导培训一个灵敏度通知的DNN(SI-DNN),不仅可以匹配OPF优化器,而且还匹配它们的部分导数相对于OPF参数(负载)。结果表明,所需的雅可比矩阵确实存在于温和条件下,并且可以从相关的原始/双解决方案中容易地计算。所提出的Si-DNN与广泛的OPF溶剂兼容,包括非凸出的二次约束的二次程序(QCQP),其半纤维程序(SDP)放松和MatPower;虽然Si-DNN可以在其他学习到OPF方案中无缝集成。三个基准电源系统的数值测试证实了SI-DNN在传统训练的DNN上预测的OPF解决方案的高级泛化和约束满意度,尤其是在低数据设置中。
translated by 谷歌翻译
在不确定性下,协调逆变器是用于集成可再生能源在配电网格中的缺点。除非频繁地呼吸折叠速度,否则控制逆变器给定近似网格条件或其代理成为一个关键规范。虽然深神经网络(DNN)可以学习最佳的逆变时间表,但保证可行性在很大程度上是难以捉摸的。而不是培训DNN以模仿已经计算的最佳功率流量(OPF)解决方案,而是将基于DNN的变频器策略集成到OPF中。所提出的DNN通过两个OPF替代方案培训,该替代方案限制了平均电压偏差,并且作为机会约束的凸起限制。训练有素的DNN可以由当前网格条件的部分,嘈杂或代理描述符驱动。当OPF必须为不可观察的馈线解决OPF而言,这很重要。假设网络模型是已知的,通过反向传播训练,并且在区分AC电流方程时训练。否则,提出了一种梯度的变体。后者当逆变器由具有仅访问电源流求解器或馈线的数字双胞胎的访问的聚合器控制时相关。数值测试将基于DNN的变频器控制方案与最佳逆变器设定值的优化和可行性进行比较。
translated by 谷歌翻译