交替的电流(AC)偶然受限的最佳功率流(CC-OPF)问题解决了发电不确定性下发电和交付的经济效率。由于可再生能源量大量,后者是现代电网的内在固有的。尽管取得了学术上的成功,但AC CC-OPF问题是高度非线性和计算要求的,这限制了其实际影响。为了改善AC-OPF问题的复杂性/准确性权衡,本文提出了一种快速数据驱动的设置,该设置使用稀疏和混合的高斯流程(GP)框架,以模拟具有输入不确定性的功率流程方程。我们提倡通过数值研究对拟议方法的效率,而与最新方法相比,多个IEEE测试用例的效率快两倍,更准确。
translated by 谷歌翻译
近年来,电力发电已导致美国超过四分之一的温室气体排放。将大量的可再生能源整合到电网中可能是减少电网中碳排放并减缓气候变化的最易于使用的方法。不幸的是,风和太阳能等最容易获得的可再生能源是高度波动的,因此给电网操作带来了很多不确定性,并挑战了现有的优化和控制政策。偶然受限的交流电(AC)最佳功率流(OPF)框架找到了最低成本生成的调度,以保持较低的概率将电网操作保持在安全限制之内。不幸的是,AC-OPF问题的偶然性约束扩展是非登记,计算挑战性的,需要了解系统参数以及有关可再生分布行为的其他假设。已知的线性和凸近似于上述问题,尽管可以进行操作,但对于操作实践来说太保守了,并且不考虑系统参数的不确定性。本文提出了一种基于高斯流程(GP)回归以缩小此差距的替代数据驱动方法。 GP方法学习了一个简单但非凸的数据驱动的近似值,可以包含不确定性输入的交流功率流程。然后,通过考虑输入和参数不确定性,将后者用于有效地确定CC-OPF的解。在众多IEEE测试案例中,说明了使用不同近似值的GP不确定性传播的拟议方法的实际效率。
translated by 谷歌翻译
由于负载和可再生能源的不确定性日益增长,对现代电网的安全和最佳运行产生了突出的挑战。随机最佳功率流(SOPF)制剂提供了一种通过计算在不确定性下保持可行性的派遣决策和控制政策来处理这些不确定性的机制。大多数SOPF配方考虑了简单的控制策略,例如数学上简单的仿射策略,类似于当前实践中使用的许多策略。通过机器学习(ML)算法的功效和一般控制政策的潜在好处的效果,我们提出了一个深度神经网络(DNN)基础的政策,该政策是实时预测发电机调度决策的不确定。使用解决SOPF的随机原始双重更新来学习DNN的权重,而无需先前一代训练标签,并且可以明确地解释SOPF中的可行性约束。 DNN政策对更简单的政策和它们在执行安全限制和产生附近的近最佳解决方案中的功效的优点在于机会在许多测试用例上受到限制的制定的情况下。
translated by 谷歌翻译
本文介绍了一个框架,以捕获先前棘手的优化约束,并通过使用神经网络将其转换为混合构成线性程序。我们编码以可拖动和顽固的约束为特征的优化问题的可行空间,例如微分方程,转到神经网络。利用神经网络的精确混合重新印象,我们解决了混合企业线性程序,该程序将解决方案准确地近似于最初棘手的非线性优化问题。我们将方法应用于交流最佳功率流问题(AC-OPF),其中直接包含动态安全性约束可使AC-OPF棘手。我们提出的方法具有比传统方法更明显的可扩展性。我们展示了考虑N-1安全性和小信号稳定性的电力系统操作方法,展示了如何有效地获得成本优势的解决方案,同时满足静态和动态安全性约束。
translated by 谷歌翻译
Non-convex AC optimal power flow (AC-OPF) is a fundamental optimization problem in power system analysis. The computational complexity of conventional solvers is typically high and not suitable for large-scale networks in real-time operation. Hence, deep learning based approaches have gained intensive attention to conduct the time-consuming training process offline. Supervised learning methods may yield a feasible AC-OPF solution with a small optimality gap. However, they often need conventional solvers to generate the training dataset. This paper proposes an end-to-end unsupervised learning based framework for AC-OPF. We develop a deep neural network to output a partial set of decision variables while the remaining variables are recovered by solving AC power flow equations. The fast decoupled power flow solver is adopted to further reduce the computational time. In addition, we propose using a modified augmented Lagrangian function as the training loss. The multipliers are adjusted dynamically based on the degree of constraint violation. Extensive numerical test results corroborate the advantages of our proposed approach over some existing methods.
translated by 谷歌翻译
本文提出了一种有效的变分推导框架,用于导出结构化高斯进程回归网络(SGPRN)模型的系列。关键的想法是将辅助诱导变量合并到潜在函数中,并共同处理诱导变量和超参数的分布作为变分参数。然后,我们提出了结构化可变分布和边缘化潜变量,这使得可分解的变分性下限并导致随机优化。我们推断方法能够建模数据,其中输出不共享具有与输入和输出大小无关的计算复杂性的公共输入集,因此容易处理具有缺失值的数据集。我们说明了我们对合成数据和真实数据集的方法的性能,并显示我们的模型通常提供比最先进的数据缺失数据的更好的估算结果。我们还提供了一种可视化方法,用于电职业学数据的输出中的输出的时变相关性,并且这些估计提供了了解神经群体动态的洞察力。
translated by 谷歌翻译
风电场设计主要取决于风力涡轮机唤醒流向大气风条件的可变性,以及唤醒之间的相互作用。使用高保真度捕获唤醒流场的物理学模型是计算风电场的布局优化的计算非常昂贵,因此数据驱动的减少的订单模型可以代表模拟风电场的有效替代方案。在这项工作中,我们使用现实世界的光检测和测量(LIDAR)测量的风力涡轮机唤醒,用机器学习构建预测代理模型。具体而言,我们首先展示使用深度自动控制器来找到低维\ emph {潜在}空间,其给出了唤醒激光雷达测量的计算易逼近的近似。然后,我们学习使用深神经网络的参数空间和(潜在空间)唤醒流场之间的映射。此外,我们还展示了使用概率机器学习技术,即高斯过程建模,除了数据中的认知和炼拉内不确定性之外,学习参数空间潜空间映射。最后,为了应对培训大型数据集,我们展示了使用变分高斯过程模型,为大型数据集提供了传统的高斯工艺模型的传统高斯工艺模型。此外,我们介绍了主动学习以自适应地构建和改进传统的高斯过程模型预测能力。总的来说,我们发现我们的方法提供了风力涡轮机唤醒流场的准确近似,其可以以比具有基于高保真物理的模拟产生的级别更便宜的成本来查询。
translated by 谷歌翻译
可再生能源世代的高百分比渗透对电力系统引起了重大不确定性。它要求网格操作员更频繁地解决替代电流最佳功率流(AC-OPF)问题,以便在传输和分配网格中进行经济和可靠的操作。在本文中,我们开发了一种Deep神经网络(DNN)方法,称为DEEPOPF,用于在传统求解器使用的时间中解决AC-OPF问题。应用机器学习技术解决AC-OPF问题的关键困难在于确保获得的解决方案尊重平等和不平等的物理和操作约束。在[1],[2]中概括了2阶段的过程,DEEPOPF首先训练DNN模型,以预测一组独立的操作变量,然后通过求解功率流方程直接计算剩余的可靠性变量。这种方法不仅保留了平衡平等的限制,而且还减少了DNN预测的变量数量,从而减少了所需的神经元和训练数据的数量。然后,DeePOPF在培训过程中采用零级梯度估计技术采用惩罚方法,以保留其余的不平等约束。作为另一个贡献,我们根据所需的近似精度来驱动调整DNN的大小的条件,该准确性测量了DNN的概括能力。它为使用DNN解决AC-OPF问题提供了理论上的理由。 IEEE 30/118/300-BU和合成2000总线测试用例的仿真结果表明,与最先进的求解器相比,DEEPOPF最多将计算时间速度高达两个数量级,费用为费用$ <$ <$ 0.1%的成本差异。
translated by 谷歌翻译
在不确定性下,协调逆变器是用于集成可再生能源在配电网格中的缺点。除非频繁地呼吸折叠速度,否则控制逆变器给定近似网格条件或其代理成为一个关键规范。虽然深神经网络(DNN)可以学习最佳的逆变时间表,但保证可行性在很大程度上是难以捉摸的。而不是培训DNN以模仿已经计算的最佳功率流量(OPF)解决方案,而是将基于DNN的变频器策略集成到OPF中。所提出的DNN通过两个OPF替代方案培训,该替代方案限制了平均电压偏差,并且作为机会约束的凸起限制。训练有素的DNN可以由当前网格条件的部分,嘈杂或代理描述符驱动。当OPF必须为不可观察的馈线解决OPF而言,这很重要。假设网络模型是已知的,通过反向传播训练,并且在区分AC电流方程时训练。否则,提出了一种梯度的变体。后者当逆变器由具有仅访问电源流求解器或馈线的数字双胞胎的访问的聚合器控制时相关。数值测试将基于DNN的变频器控制方案与最佳逆变器设定值的优化和可行性进行比较。
translated by 谷歌翻译
本文提出了一类新的实时优化方案,以克服不确定过程的系统模型不匹配。这项工作的新颖性在于在贝叶斯优化框架内集成无衍生优化的优化方案和多保真高斯进程。所提出的方案对随机系统进行了两个高斯过程,通过测量来模拟(已知)过程模型,另一个,真实系统。以这种方式,可以通过模型获得低保真度样本,而通过系统的测量获得高保真样本。该框架在非参数时捕获系统的行为,同时通过采集函数驾驶探索。使用高斯进程代表系统的好处是能够实时地执行不确定性量化,并允许有机会限制以满足高信任。这导致一种实用的方法,其在数值案例研究中示出,包括半批量光生物反应器优化问题。
translated by 谷歌翻译
各种科学和工程领域使用参数化机制模型。工程师和科学家通常可以假设几个竞争模型来解释特定的过程或现象。考虑一个模特歧视设置,我们希望找到最佳机械,动态模型候选者和最佳模型参数估计。通常,若干竞争机械模型可以解释可用数据,因此通过找到最大化模型预测发散的实验设置,可以通过找到最大化模型预测发散的实验设置来实现最佳地收集额外数据的动态实验。我们争论文献中有两种主要方法,用于解决最佳设计问题:(i)分析方法,使用线性和高斯近似来找设计目标的闭合表达式,以及(ii)数据驱动方法,这通常依赖于计算密集的蒙特卡罗技术。 olofsson等人。 (ICML 35,2018)介绍了高斯工艺(GP)替代模型来杂交的分析和数据驱动方法,这允许计算的实验设计,以识别黑盒式模型。在这项研究中,我们证明我们可以扩展现有的动态实验设计方法,以纳入更广泛的问题不确定性。我们还延伸了Olofsson等人。 (2018)使用GP代理模型来辨别动态黑盒式模型的方法。我们在文献中的着名案例研究中评估了我们的方法,并探讨了使用GP代理到近似基于梯度的方法的后果。
translated by 谷歌翻译
要将计算负担从实时到延迟关键电源系统应用程序的脱机,最近的作品招待使用深神经网络(DNN)的想法来预测一次呈现的AC最佳功率流(AC-OPF)的解决方案负载需求。随着网络拓扑可能改变的,以样本有效的方式训练该DNN成为必需品。为提高数据效率,这项工作利用了OPF数据不是简单的训练标签,而是构成参数优化问题的解决方案。因此,我们倡导培训一个灵敏度通知的DNN(SI-DNN),不仅可以匹配OPF优化器,而且还匹配它们的部分导数相对于OPF参数(负载)。结果表明,所需的雅可比矩阵确实存在于温和条件下,并且可以从相关的原始/双解决方案中容易地计算。所提出的Si-DNN与广泛的OPF溶剂兼容,包括非凸出的二次约束的二次程序(QCQP),其半纤维程序(SDP)放松和MatPower;虽然Si-DNN可以在其他学习到OPF方案中无缝集成。三个基准电源系统的数值测试证实了SI-DNN在传统训练的DNN上预测的OPF解决方案的高级泛化和约束满意度,尤其是在低数据设置中。
translated by 谷歌翻译
最佳功率流(OPF)是电力系统中的一个基本问题。它是计算的具有挑战性,最近的研究已经建议使用深神经网络(DNN)在与通过经典优化方法获得的那些相比时在大大降低的运行时找到OPF近似。虽然这些作品表明,令人鼓舞的准确性和运行时的结果,但对于为什么这些模型可以准确地预测OPF解决方案以及宽大的鲁棒性,而令人愉快的结果。本文提供了解决这种知识差距的前进。该纸张将发电机输出的波动性连接到学习模型近似对象的能力,它阐明了影响DNN模型的特征来学习良好的预测因子,并提出了一种利用此目的观察的新模型纸张生产精确且强大的opf预测。
translated by 谷歌翻译
低压网络中分布式能源的渗透不断增加,这将最终用户从消费者转变为生产者。但是,由于零售和网络服务提供的监管分离,智能电表数据的不完整智能电表的推出和缺乏智能电表数据,这使主动分配网络管理变得困难。此外,分销网络运营商通常无法访问实时智能电表数据,这会带来额外的挑战。由于缺乏更好的解决方案,他们使用毯子屋顶太阳能出口限制,从而导致次优结果。为了解决这个问题,我们设计了一个有条件的生成对抗网络(CGAN)的模型来预测家庭太阳能产生和电力需求,这是用于在不确定性下用于计算公平操作信封的机会约束最佳功率流的输入。
translated by 谷歌翻译
对意外突发事件的有效和及时的响应对于提高电网的恢复性至关重要。考虑到级联传播的快速,复杂过程,由于计算复杂性和通信延迟问题,难以在大型网络中获得校正动作,例如最佳负载脱落(OLS)。这项工作通过在通过离线神经网络(NN)培训下,通过在各种潜在的应变场景下构建负载脱落的最佳决策规则来提出创新的学习措施方法。值得注意的是,所提出的基于NN的OLS决策是完全分散的,使单独的负载中心能够使用易于获得的局部测量来快速地对特定的应变作出反应。IEEE 14总线系统的数值研究表明了我们可扩展的OLS设计的有效性,用于对严格的网格紧急事件进行实时响应。
translated by 谷歌翻译
越来越多的间歇可再生能源的整合,特别是在分配水平,需要对TheGrid的知识而设计的先进规划和优化方法,特别是捕获电网拓扑和线参数的进入矩阵。然而,对进入矩阵的可靠估计可以丢失或迅速地过时用于时间变化网格。在这项工作中,我们提出了利用从微量PMU收集的电压和电流测量的数据驱动的识别方法。更确切地说,我们首先呈现最大的似然方法,然后朝着贝叶斯框架移动,利用最大后验估计的原则。与大多数现有的Con-Tribution相比,我们的方法不仅是电压和电流数据上的测量噪声中的因素,而且还能够利用可用的先验信息,例如稀疏性模式和已知的列表参数。在基准案件上进行的模拟表明,与储藏仪相比,我们的方法可以实现明显更大的准确性。
translated by 谷歌翻译
Sparse Gaussian process methods that use inducing variables require the selection of the inducing inputs and the kernel hyperparameters. We introduce a variational formulation for sparse approximations that jointly infers the inducing inputs and the kernel hyperparameters by maximizing a lower bound of the true log marginal likelihood. The key property of this formulation is that the inducing inputs are defined to be variational parameters which are selected by minimizing the Kullback-Leibler divergence between the variational distribution and the exact posterior distribution over the latent function values. We apply this technique to regression and we compare it with other approaches in the literature.
translated by 谷歌翻译
多维时空数据的概率建模对于许多现实世界应用至关重要。然而,现实世界时空数据通常表现出非平稳性的复杂依赖性,即相关结构随位置/时间而变化,并且在空间和时间之间存在不可分割的依赖性,即依赖关系。开发有效和计算有效的统计模型,以适应包含远程和短期变化的非平稳/不可分割的过程,成为一项艰巨的任务,尤其是对于具有各种腐败/缺失结构的大规模数据集。在本文中,我们提出了一个新的统计框架 - 贝叶斯互补内核学习(BCKL),以实现多维时空数据的可扩展概率建模。为了有效地描述复杂的依赖性,BCKL与短距离时空高斯过程(GP)相结合的内核低级分解(GP),其中两个组件相互补充。具体而言,我们使用多线性低级分组组件来捕获数据中的全局/远程相关性,并基于紧凑的核心函数引入加法短尺度GP,以表征其余的局部变异性。我们为模型推断开发了有效的马尔可夫链蒙特卡洛(MCMC)算法,并在合成和现实世界时空数据集上评估了所提出的BCKL框架。我们的结果证实了BCKL在提供准确的后均值和高质量不确定性估计方面的出色表现。
translated by 谷歌翻译
在这项工作中,我们提出了一个新的高斯进程回归(GPR)方法:物理信息辅助Kriging(PHIK)。在标准数据驱动的Kriging中,感兴趣的未知功能通常被视为高斯过程,其中具有假定的静止协方差,其具有从数据估计的QuandEdmente。在PHIK中,我们从可用随机模型的实现中计算平均值和协方差函数,例如,从管理随机部分微分方程解决方案的实现。这种构造的高斯过程通常是非静止的,并且不承担特定形式的协方差。我们的方法避免了数据驱动的GPR方法中的优化步骤来识别超参数。更重要的是,我们证明了确定性线性操作员形式的物理约束在得到的预测中保证。当在随机模型实现中包含错误时,我们还提供了保留物理约束时的误差估计。为了降低获取随机模型的计算成本,我们提出了一种多级蒙特卡罗估计的平均和协方差函数。此外,我们介绍了一种有源学习算法,指导选择附加观察位置。 PHIK的效率和准确性被证明重建部分已知的修饰的Branin功能,研究三维传热问题,并从稀疏浓度测量学习保守的示踪剂分布。
translated by 谷歌翻译
物理受限的机器学习正在成为物理机器学习领域的重要主题。将物理限制纳入机器学习方法的最重要的优势之一是,由此产生的模型需要较少的数据训练。通过将物理规则纳入机器学习配方本身,预计预测将在物理上合理。高斯流程(GP)可能是小型数据集的机器学习中最常见的方法之一。在本文中,我们研究了在三个不同的材料数据集上限制具有单调性的GP公式的可能性,其中使用了一个实验和两个计算数据集。比较单调的GP与常规GP进行比较,该GP观察到后方差的显着降低。单调的GP在插值方面严格单调性,但是在外推方案中,随着训练数据集超越训练数据集,单调效应开始消失。与常规GP相比,GP对GP的单调性施加的精度为较小。单调的GP可能在数据稀缺和嘈杂的应用中最有用,并且由强有力的物理证据支持单调性。
translated by 谷歌翻译