指导神经网络设计的方法的开发是深度学习理论的重要开放挑战。作为原则神经体系结构设计的范式,我们提出了高性能内核的翻译,它们对第一原理设计更好地理解和适合于等效的网络体系结构,这些网络体系结构具有较高的效率,灵活性和功能学习。为此,我们建设性地证明,只有适当的激活函数选择,任何一个正阳性点 - 产品核可以实现为完全连接的神经网络的NNGP或神经切线核,只有一个隐藏的层。我们通过数值验证我们的构建,并证明了其在多个实验中有限完全连接网络的设计工具。
translated by 谷歌翻译
通过建立神经网络和内核方法之间的联系,无限宽度极限阐明了深度学习的概括和优化方面。尽管它们的重要性,但这些内核方法的实用性在大规模学习设置中受到限制,因为它们(超)二次运行时和内存复杂性。此外,大多数先前关于神经内核的作品都集中在relu激活上,这主要是由于其受欢迎程度,但这也是由于很难计算此类内核来进行一般激活。在这项工作中,我们通过提供进行一般激活的方法来克服此类困难。首先,我们编译和扩展激活功能的列表,该函数允许精确的双重激活表达式计算神经内核。当确切的计算未知时,我们提出有效近似它们的方法。我们提出了一种快速的素描方法,该方法近似于任何多种多层神经网络高斯过程(NNGP)内核和神经切线核(NTK)矩阵,以实现广泛的激活功能,这超出了常见的经过分析的RELU激活。这是通过显示如何使用任何所需激活函​​数的截短的Hermite膨胀来近似神经内核来完成的。虽然大多数先前的工作都需要单位球体上的数据点,但我们的方法不受此类限制的影响,并且适用于$ \ Mathbb {r}^d $中的任何点数据集。此外,我们为NNGP和NTK矩阵提供了一个子空间嵌入,具有接近输入的距离运行时和接近最佳的目标尺寸,该目标尺寸适用于任何\ EMPH {均质}双重激活功能,具有快速收敛的Taylor膨胀。从经验上讲,关于精确的卷积NTK(CNTK)计算,我们的方法可实现$ 106 \ times $速度,用于在CIFAR-10数据集上的5层默特网络的近似CNTK。
translated by 谷歌翻译
人们普遍认为,深网的成功在于他们学习数据功能的有意义表示的能力。然而,了解该功能学习何时以及如何提高性能仍然是一个挑战:例如,它对经过对图像进行分类的现代体系结构有益,而对于在相同数据上针对同一任务培训的完全连接的网络是有害的。在这里,我们提出了有关此难题的解释,表明特征学习可以比懒惰训练(通过随机特征内核或NTK)更糟糕,因为前者可以导致较少的神经表示。尽管已知稀疏性对于学习各向异性数据是必不可少的,但是当目标函数沿输入空间的某些方向恒定或平滑时,这是有害的。我们在两个设置中说明了这种现象:(i)在D维单元球体上的高斯随机函数的回归,以及(ii)图像基准数据集的分类。对于(i),我们通过训练点数来计算概括误差的缩放率,并证明即使输入空间的尺寸很大,不学习特征的方法也可以更好地推广。对于(ii),我们从经验上表明,学习特征确实会导致稀疏,从而减少图像预测因子的平滑表示。这一事实是可能导致性能恶化的,这与沿差异性的平滑度相关。
translated by 谷歌翻译
当我们扩大数据集,模型尺寸和培训时间时,深入学习方法的能力中存在越来越多的经验证据。尽管有一些关于这些资源如何调节统计能力的说法,但对它们对模型培训的计算问题的影响知之甚少。这项工作通过学习$ k $ -sparse $ n $ bits的镜头进行了探索,这是一个构成理论计算障碍的规范性问题。在这种情况下,我们发现神经网络在扩大数据集大小和运行时间时会表现出令人惊讶的相变。特别是,我们从经验上证明,通过标准培训,各种体系结构以$ n^{o(k)} $示例学习稀疏的平等,而损失(和错误)曲线在$ n^{o(k)}后突然下降。 $迭代。这些积极的结果几乎匹配已知的SQ下限,即使没有明确的稀疏性先验。我们通过理论分析阐明了这些现象的机制:我们发现性能的相变不到SGD“在黑暗中绊倒”,直到它找到了隐藏的特征集(自然算法也以$ n^中的方式运行{o(k)} $ time);取而代之的是,我们表明SGD逐渐扩大了人口梯度的傅立叶差距。
translated by 谷歌翻译
A longstanding goal in deep learning research has been to precisely characterize training and generalization. However, the often complex loss landscapes of neural networks have made a theory of learning dynamics elusive. In this work, we show that for wide neural networks the learning dynamics simplify considerably and that, in the infinite width limit, they are governed by a linear model obtained from the first-order Taylor expansion of the network around its initial parameters. Furthermore, mirroring the correspondence between wide Bayesian neural networks and Gaussian processes, gradient-based training of wide neural networks with a squared loss produces test set predictions drawn from a Gaussian process with a particular compositional kernel. While these theoretical results are only exact in the infinite width limit, we nevertheless find excellent empirical agreement between the predictions of the original network and those of the linearized version even for finite practically-sized networks. This agreement is robust across different architectures, optimization methods, and loss functions.
translated by 谷歌翻译
宽度限制最近是深度学习研究的焦点:模数计算实用,做更广泛的网络优于较窄的网络?当传统网络增益具有宽度的代表性,潜在掩盖任何负面影响,回答这个问题一直在具有挑战性。我们在本文中的分析通过神经网络的概括到深层高斯过程(深GP),一类非参数分层模型,占据了神经网络的非参数分层模型。在这样做时,我们的目标是了解一旦对给定建模任务的容量足够的容量,才能了解宽度(标准)神经网络。我们深入GP的理论和经验结果表明,大宽度可能对等级模型有害。令人惊讶的是,我们证明了甚至非参数的深GP融合到高斯过程,实际上变得浅薄而没有任何代表性的力量。对应于数据适应性基本函数的混合的后后,与宽度变得较小。我们的尾部分析表明,宽度和深度具有相反的影响:深度突出了模型的非高斯,而宽度使模型越来越高斯。我们发现有一个“甜蜜点”,可以在限制GP行为防止适应性之前最大化测试性能,以宽度= 1或宽度= 2用于非参数深GP。这些结果对具有L2正规化训练的传统神经网络中的相同现象(类似于参数的高斯),使得这种神经网络可能需要多达500至1000个隐藏单元的现象,以获得足够的容量 - 取决于数据集 - 但进一步的宽度降低了性能。
translated by 谷歌翻译
尽管他们成功了,但了解卷积神经网络(CNN)如何有效地学习高维功能仍然是一个基本挑战。一个普遍的看法是,这些模型利用自然数据(例如图像)的组成和分层结构。然而,我们对这种结构如何影响性能,缺乏定量的理解,例如训练样本数量的概括误差的衰减率。在本文中,我们研究了内核制度中的深入CNN:i)我们证明了相应的内核及其渐近学的光谱继承了网络的层次结构; ii)我们使用概括范围来证明深CNN适应目标函数的空间尺度; iii)我们通过计算教师学生环境中误差的衰减率来说明这一结果,在教师学生的设置中,对另一个具有随机发射参数的深CNN的输出进行了深入的CNN训练。我们发现,如果教师函数取决于输入变量的某些低维基集,则速率由这些子集的有效维度控制。相反,如果教师函数取决于整个输入变量,则错误率与输入维度成反比。有趣的是,这意味着尽管具有层次结构,但深CNN产生的功能太丰富了,无法在高维度上有效地学习。
translated by 谷歌翻译
It has long been known that a single-layer fully-connected neural network with an i.i.d. prior over its parameters is equivalent to a Gaussian process (GP), in the limit of infinite network width. This correspondence enables exact Bayesian inference for infinite width neural networks on regression tasks by means of evaluating the corresponding GP. Recently, kernel functions which mimic multi-layer random neural networks have been developed, but only outside of a Bayesian framework. As such, previous work has not identified that these kernels can be used as covariance functions for GPs and allow fully Bayesian prediction with a deep neural network. In this work, we derive the exact equivalence between infinitely wide deep networks and GPs. We further develop a computationally efficient pipeline to compute the covariance function for these GPs. We then use the resulting GPs to perform Bayesian inference for wide deep neural networks on MNIST and CIFAR-10. We observe that trained neural network accuracy approaches that of the corresponding GP with increasing layer width, and that the GP uncertainty is strongly correlated with trained network prediction error. We further find that test performance increases as finite-width trained networks are made wider and more similar to a GP, and thus that GP predictions typically outperform those of finite-width networks. Finally we connect the performance of these GPs to the recent theory of signal propagation in random neural networks. * Both authors contributed equally to this work. † Work done as a member of the Google AI Residency program (g.co/airesidency). 1 Throughout this paper, we assume the conditions on the parameter distributions and nonlinearities are such that the Central Limit Theorem will hold; for instance, that the weight variance is scaled inversely proportional to the layer width.
translated by 谷歌翻译
The study of feature propagation at initialization in neural networks lies at the root of numerous initialization designs. An assumption very commonly made in the field states that the pre-activations are Gaussian. Although this convenient Gaussian hypothesis can be justified when the number of neurons per layer tends to infinity, it is challenged by both theoretical and experimental works for finite-width neural networks. Our major contribution is to construct a family of pairs of activation functions and initialization distributions that ensure that the pre-activations remain Gaussian throughout the network's depth, even in narrow neural networks. In the process, we discover a set of constraints that a neural network should fulfill to ensure Gaussian pre-activations. Additionally, we provide a critical review of the claims of the Edge of Chaos line of works and build an exact Edge of Chaos analysis. We also propose a unified view on pre-activations propagation, encompassing the framework of several well-known initialization procedures. Finally, our work provides a principled framework for answering the much-debated question: is it desirable to initialize the training of a neural network whose pre-activations are ensured to be Gaussian?
translated by 谷歌翻译
我们分析了通过梯度流通过自洽动力场理论训练的无限宽度神经网络中的特征学习。我们构建了确定性动力学阶参数的集合,该参数是内部产物内核,用于在成对的时间点中,每一层中隐藏的单位激活和梯度,从而减少了通过训练对网络活动的描述。这些内核顺序参数共同定义了隐藏层激活分布,神经切线核的演变以及因此输出预测。我们表明,现场理论推导恢复了从Yang和Hu(2021)获得张量程序的无限宽度特征学习网络的递归随机过程。对于深线性网络,这些内核满足一组代数矩阵方程。对于非线性网络,我们提供了一个交替的采样过程,以求助于内核顺序参数。我们提供了与各种近似方案的自洽解决方案的比较描述。最后,我们提供了更现实的设置中的实验,这些实验表明,在CIFAR分类任务上,在不同宽度上保留了CNN的CNN的损耗和内核动力学。
translated by 谷歌翻译
尽管通常认为在高维度中学习受到维度的诅咒,但现代的机器学习方法通​​常具有惊人的力量,可以解决广泛的挑战性现实世界学习问题而无需使用大量数据。这些方法如何打破这种诅咒仍然是深度学习理论中的一个基本开放问题。尽管以前的努力通过研究数据(D),模型(M)和推理算法(i)作为独立模块来研究了这个问题,但在本文中,我们将三胞胎(D,M,I)分析为集成系统和确定有助于减轻维度诅咒的重要协同作用。我们首先研究了与各种学习算法(M,i)相关的基本对称性,重点是深度学习中的四个原型体系结构:完全连接的网络(FCN),本地连接的网络(LCN)和卷积网络,而无需合并(有和没有合并)( GAP/VEC)。我们发现,当这些对称性与数据分布的对称性兼容时,学习是最有效的,并且当(d,m,i)三重态的任何成员不一致或次优时,性能会显着恶化。
translated by 谷歌翻译
深神经网络(DNN)是用于压缩和蒸馏信息的强大工具。由于它们的规模和复杂性,通常涉及数十亿间相互作用的内部自由度,精确分析方法通常会缩短。这种情况下的共同策略是识别平均潜在的快速微观变量的不稳定行为的缓慢自由度。在这里,我们在训练结束时识别在过度参数化的深卷积神经网络(CNNS)中发生的尺度的分离。它意味着神经元预激活与几乎高斯的方式与确定性潜在内核一起波动。在对于具有无限许多频道的CNN来说,这些内核是惰性的,对于有限的CNNS,它们以分析的方式通过数据适应和学习数据。由此产生的深度学习的热力学理论产生了几种深度非线性CNN玩具模型的准确预测。此外,它还提供了新的分析和理解CNN的方法。
translated by 谷歌翻译
How well does a classic deep net architecture like AlexNet or VGG19 classify on a standard dataset such as CIFAR-10 when its "width"-namely, number of channels in convolutional layers, and number of nodes in fully-connected internal layers -is allowed to increase to infinity? Such questions have come to the forefront in the quest to theoretically understand deep learning and its mysteries about optimization and generalization. They also connect deep learning to notions such as Gaussian processes and kernels. A recent paper [Jacot et al., 2018] introduced the Neural Tangent Kernel (NTK) which captures the behavior of fully-connected deep nets in the infinite width limit trained by gradient descent; this object was implicit in some other recent papers. An attraction of such ideas is that a pure kernel-based method is used to capture the power of a fully-trained deep net of infinite width. The current paper gives the first efficient exact algorithm for computing the extension of NTK to convolutional neural nets, which we call Convolutional NTK (CNTK), as well as an efficient GPU implementation of this algorithm. This results in a significant new benchmark for performance of a pure kernel-based method on CIFAR-10, being 10% higher than the methods reported in [Novak et al., 2019], and only 6% lower than the performance of the corresponding finite deep net architecture (once batch normalization etc. are turned off). Theoretically, we also give the first non-asymptotic proof showing that a fully-trained sufficiently wide net is indeed equivalent to the kernel regression predictor using NTK.
translated by 谷歌翻译
要了解深度学习的作品,了解神经网络的培训动态至关重要。关于这些动态的几个有趣的假设是基于经验观察到的现象,但存在有限的理论上了解此类现象的时间和原因。在本文中,我们考虑了内核最小二乘目标对梯度流动的培训动态,这是SGD培训的神经网络的限制动态。使用精确的高维渐近学,我们将拟合模型的动态表征在两个“世界”中:在甲骨文世界中,该模型在人口分布和实证世界中培训,模型在采样的数据集上培训。我们展示在内核的温和条件下,$ L ^ 2 $目标回归函数,培训动力学经历三个阶段,其特征在于两个世界的模型的行为。我们的理论结果也在数学上正式化一些有趣的深度学习现象。具体而言,在我们的环境中,我们展示了SGD逐步了解更多复杂的功能,并且存在“深度引导”现象:在第二阶段,尽管经验训练误差要小得多,但两个世界的测试错误仍然接近。最后,我们提供了一个具体的例子,比较了两种不同核的动态,这表明更快的培训不需要更好地推广。
translated by 谷歌翻译
神经切线核是根据无限宽度神经网络的参数分布定义的内核函数。尽管该极限不切实际,但神经切线内核允许对神经网络进行更直接的研究,并凝视着黑匣子的面纱。最近,从理论上讲,Laplace内核和神经切线内核在$ \ Mathbb {S}}^{D-1} $中共享相同的复制核Hilbert空间,暗示了它们的等价。在这项工作中,我们分析了两个内核的实际等效性。我们首先是通过与核的准确匹配,然后通过与高斯过程的后代匹配来进行匹配。此外,我们分析了$ \ mathbb {r}^d $中的内核,并在回归任务中进行实验。
translated by 谷歌翻译
神经网络和高斯过程的优势和劣势是互补的。更好地了解他们的关系伴随着使每个方法从另一个方法中受益的承诺。在这项工作中,我们建立了神经网络的前进通行证与(深)稀疏高斯工艺模型之间的等价。我们开发的理论是基于解释激活函数作为跨域诱导功能,通过对激活函数和内核之间的相互作用进行严格分析。这导致模型可以被视为具有改善的不确定性预测或深度高斯过程的神经网络,其具有提高的预测精度。这些权利要求通过对回归和分类数据集进行实验结果来支持。
translated by 谷歌翻译
Whilst deep neural networks have shown great empirical success, there is still much work to be done to understand their theoretical properties. In this paper, we study the relationship between random, wide, fully connected, feedforward networks with more than one hidden layer and Gaussian processes with a recursive kernel definition. We show that, under broad conditions, as we make the architecture increasingly wide, the implied random function converges in distribution to a Gaussian process, formalising and extending existing results by Neal (1996) to deep networks. To evaluate convergence rates empirically, we use maximum mean discrepancy. We then compare finite Bayesian deep networks from the literature to Gaussian processes in terms of the key predictive quantities of interest, finding that in some cases the agreement can be very close. We discuss the desirability of Gaussian process behaviour and review non-Gaussian alternative models from the literature. 1
translated by 谷歌翻译
最近的作品表明,有限的贝叶斯神经网络有时可能会越优于其无限堂兄弟,因为有限网络可以灵活地调整其内部表示。然而,我们对有限网络的学习隐藏层表示如何与无限网络的固定表示不同的理论理解仍然不完整。研究了对网络的扰动有限宽度校正,但已经研究过的网络,但学习特征的渐近学尚未完全表征。在这里,我们认为具有线性读数和高斯可能性的任何贝叶斯网络的平均特征内核的领先有限宽度校正具有很大程度上的普遍形式。我们明确地说明了三个易行网络架构:深线性完全连接和卷积网络,以及具有单个非线性隐藏层的网络。我们的结果开始阐明任务相关的学习信号如何塑造宽阔的贝叶斯神经网络的隐藏层表示。
translated by 谷歌翻译
本文开发了简单的前馈神经网络,实现了所有连续功能的通用近似性,具有固定的有限数量的神经元。这些神经网络很简单,因为它们的设计具有简单且可增加的连续激活功能$ \ Sigma $利用三角波函数和软片功能。我们证明了$ \ Sigma $ -Activated网络,宽度为36d $ 36d(2d + 1)$和11 $ 11 $可以在任意小错误中估计$ d $ -dimensioanl超级函数上的任何连续功能。因此,对于监督学习及其相关的回归问题,这些网络产生的假设空间,尺寸不小于36d(2d + 1)\ times 11 $的持续功能的空间。此外,由图像和信号分类引起的分类函数在$ \ sigma $ -activated网络生成的假设空间中,宽度为36d(2d + 1)$和12 $ 12 $,当存在$ \的成对不相交的界限子集时mathbb {r} ^ d $,使得同一类的样本位于同一子集中。
translated by 谷歌翻译
由于Jacot等人的著名结果,神经切线内核(NTK)被广泛用于分析过多散热性神经网络。 (2018):在无限宽度限制中,NTK在训练过程中是确定性和恒定的。但是,该结果无法解释深网的行为,因为如果深度和宽度同时无穷大,通常不会成立。在本文中,我们研究了与宽度相当的深度连接的Relu网络的NTK。我们证明NTK性质显着取决于初始化时的深度与宽度比和参数的分布。实际上,我们的结果表明,在Poole等人中确定的超参数空间中这三个阶段的重要性。 (2016年):订购,混乱和混乱的边缘(EOC)。我们在所有三个阶段中都在无限深度和宽度极限中得出NTK分散剂的精确表达式,并得出结论,NTK的可变性在EOC和混乱阶段随着深度而呈指数增长,但在有序阶段中却没有。我们还表明,深网的NTK只能在有序阶段训练期间保持恒定,并讨论NTK矩阵的结构在训练过程中如何变化。
translated by 谷歌翻译