It has long been known that a single-layer fully-connected neural network with an i.i.d. prior over its parameters is equivalent to a Gaussian process (GP), in the limit of infinite network width. This correspondence enables exact Bayesian inference for infinite width neural networks on regression tasks by means of evaluating the corresponding GP. Recently, kernel functions which mimic multi-layer random neural networks have been developed, but only outside of a Bayesian framework. As such, previous work has not identified that these kernels can be used as covariance functions for GPs and allow fully Bayesian prediction with a deep neural network. In this work, we derive the exact equivalence between infinitely wide deep networks and GPs. We further develop a computationally efficient pipeline to compute the covariance function for these GPs. We then use the resulting GPs to perform Bayesian inference for wide deep neural networks on MNIST and CIFAR-10. We observe that trained neural network accuracy approaches that of the corresponding GP with increasing layer width, and that the GP uncertainty is strongly correlated with trained network prediction error. We further find that test performance increases as finite-width trained networks are made wider and more similar to a GP, and thus that GP predictions typically outperform those of finite-width networks. Finally we connect the performance of these GPs to the recent theory of signal propagation in random neural networks. * Both authors contributed equally to this work. † Work done as a member of the Google AI Residency program (g.co/airesidency). 1 Throughout this paper, we assume the conditions on the parameter distributions and nonlinearities are such that the Central Limit Theorem will hold; for instance, that the weight variance is scaled inversely proportional to the layer width.
translated by 谷歌翻译
对具有无限宽度的神经网络的研究对于更好地理解实际应用中的神经网络很重要。在这项工作中,我们得出了深,无限宽度的Maxout网络和高斯过程(GP)的等效性,并用组成结构表征Maxout内核。此外,我们建立了深厚的Maxout网络内核与深神经网络内核之间的联系。我们还提供了有效的数值实现,可以适应任何麦克斯特等级。数值结果表明,与有限宽度的对应物和深神经网络内核相比,基于深层Maxout网络内核进行贝叶斯推论可能会导致竞争成果。这使我们启发了麦克斯的激活也可以纳入其他无限宽度神经网络结构,例如卷积神经网络(CNN)。
translated by 谷歌翻译
A longstanding goal in deep learning research has been to precisely characterize training and generalization. However, the often complex loss landscapes of neural networks have made a theory of learning dynamics elusive. In this work, we show that for wide neural networks the learning dynamics simplify considerably and that, in the infinite width limit, they are governed by a linear model obtained from the first-order Taylor expansion of the network around its initial parameters. Furthermore, mirroring the correspondence between wide Bayesian neural networks and Gaussian processes, gradient-based training of wide neural networks with a squared loss produces test set predictions drawn from a Gaussian process with a particular compositional kernel. While these theoretical results are only exact in the infinite width limit, we nevertheless find excellent empirical agreement between the predictions of the original network and those of the linearized version even for finite practically-sized networks. This agreement is robust across different architectures, optimization methods, and loss functions.
translated by 谷歌翻译
为了更好地了解大型神经网络的理论行为,有几项工程已经分析了网络宽度倾向于无穷大的情况。在该制度中,随机初始化的影响和训练神经网络的过程可以与高斯过程和神经切线内核等分析工具正式表达。在本文中,我们审查了在这种无限宽度神经网络中量化不确定性的方法,并将它们与贝叶斯推理框架中的高斯过程的关系进行比较。我们利用沿途使用几个等价结果,以获得预测不确定性的确切闭合性解决方案。
translated by 谷歌翻译
我们分析了通过梯度流通过自洽动力场理论训练的无限宽度神经网络中的特征学习。我们构建了确定性动力学阶参数的集合,该参数是内部产物内核,用于在成对的时间点中,每一层中隐藏的单位激活和梯度,从而减少了通过训练对网络活动的描述。这些内核顺序参数共同定义了隐藏层激活分布,神经切线核的演变以及因此输出预测。我们表明,现场理论推导恢复了从Yang和Hu(2021)获得张量程序的无限宽度特征学习网络的递归随机过程。对于深线性网络,这些内核满足一组代数矩阵方程。对于非线性网络,我们提供了一个交替的采样过程,以求助于内核顺序参数。我们提供了与各种近似方案的自洽解决方案的比较描述。最后,我们提供了更现实的设置中的实验,这些实验表明,在CIFAR分类任务上,在不同宽度上保留了CNN的CNN的损耗和内核动力学。
translated by 谷歌翻译
Whilst deep neural networks have shown great empirical success, there is still much work to be done to understand their theoretical properties. In this paper, we study the relationship between random, wide, fully connected, feedforward networks with more than one hidden layer and Gaussian processes with a recursive kernel definition. We show that, under broad conditions, as we make the architecture increasingly wide, the implied random function converges in distribution to a Gaussian process, formalising and extending existing results by Neal (1996) to deep networks. To evaluate convergence rates empirically, we use maximum mean discrepancy. We then compare finite Bayesian deep networks from the literature to Gaussian processes in terms of the key predictive quantities of interest, finding that in some cases the agreement can be very close. We discuss the desirability of Gaussian process behaviour and review non-Gaussian alternative models from the literature. 1
translated by 谷歌翻译
神经网络和高斯过程的优势和劣势是互补的。更好地了解他们的关系伴随着使每个方法从另一个方法中受益的承诺。在这项工作中,我们建立了神经网络的前进通行证与(深)稀疏高斯工艺模型之间的等价。我们开发的理论是基于解释激活函数作为跨域诱导功能,通过对激活函数和内核之间的相互作用进行严格分析。这导致模型可以被视为具有改善的不确定性预测或深度高斯过程的神经网络,其具有提高的预测精度。这些权利要求通过对回归和分类数据集进行实验结果来支持。
translated by 谷歌翻译
Deep Gaussian工艺(DGP)作为贝叶斯学习的先验模型直观地利用功能组成中的表达能力。 DGP还提供了不同的建模功能,但是推断很具有挑战性,因为潜在功能空间的边缘化是无法处理的。借助Bochner定理,具有平方指数内核的DGP可以看作是由随机特征层,正弦和余弦激活单元以及随机重量层组成的深度三角网络。在具有瓶颈的宽极限中,我们表明重量空间视图产生了相同的有效协方差函数,该函数先前在功能空间中获得。同样,在网络参数上改变先前的分布相当于使用不同的内核。因此,DGP可以转换为深瓶颈触发网络,可以通过该网络获得确切的最大后验估计。有趣的是,网络表示可以研究DGP的神经切线核,这也可能揭示了棘手的预测分布的平均值。从统计上讲,与浅网络不同,有限宽度的深网具有与极限内核的协方差,并且内部和外部宽度可能在功能学习中起不同的作用。存在数值模拟以支持我们的发现。
translated by 谷歌翻译
神经切线核是根据无限宽度神经网络的参数分布定义的内核函数。尽管该极限不切实际,但神经切线内核允许对神经网络进行更直接的研究,并凝视着黑匣子的面纱。最近,从理论上讲,Laplace内核和神经切线内核在$ \ Mathbb {S}}^{D-1} $中共享相同的复制核Hilbert空间,暗示了它们的等价。在这项工作中,我们分析了两个内核的实际等效性。我们首先是通过与核的准确匹配,然后通过与高斯过程的后代匹配来进行匹配。此外,我们分析了$ \ mathbb {r}^d $中的内核,并在回归任务中进行实验。
translated by 谷歌翻译
缺乏对深度学习系统的洞察力阻碍了他们的系统设计。在科学和工程学中,建模是一种用于了解内部过程不透明的复杂系统的方法。建模用更简单的代理代替复杂的系统,该系统更适合解释。从中汲取灵感,我们使用高斯流程为神经网络构建了一类代理模型。我们没有从神经网络的某些限制案例中得出内核,而是从经验上从神经网络的自然主义行为中学习了高斯过程的内核。我们首先通过两项案例研究评估我们的方法,灵感来自先前对神经网络行为的理论研究,在这些案例研究中,我们捕获了学习低频的神经网络偏好,并确定了深层神经网络中的病理行为。在进一步的实践案例研究中,我们使用学识渊博的内核来预测神经网络的泛化特性。
translated by 谷歌翻译
宽度限制最近是深度学习研究的焦点:模数计算实用,做更广泛的网络优于较窄的网络?当传统网络增益具有宽度的代表性,潜在掩盖任何负面影响,回答这个问题一直在具有挑战性。我们在本文中的分析通过神经网络的概括到深层高斯过程(深GP),一类非参数分层模型,占据了神经网络的非参数分层模型。在这样做时,我们的目标是了解一旦对给定建模任务的容量足够的容量,才能了解宽度(标准)神经网络。我们深入GP的理论和经验结果表明,大宽度可能对等级模型有害。令人惊讶的是,我们证明了甚至非参数的深GP融合到高斯过程,实际上变得浅薄而没有任何代表性的力量。对应于数据适应性基本函数的混合的后后,与宽度变得较小。我们的尾部分析表明,宽度和深度具有相反的影响:深度突出了模型的非高斯,而宽度使模型越来越高斯。我们发现有一个“甜蜜点”,可以在限制GP行为防止适应性之前最大化测试性能,以宽度= 1或宽度= 2用于非参数深GP。这些结果对具有L2正规化训练的传统神经网络中的相同现象(类似于参数的高斯),使得这种神经网络可能需要多达500至1000个隐藏单元的现象,以获得足够的容量 - 取决于数据集 - 但进一步的宽度降低了性能。
translated by 谷歌翻译
我们说明了一种可以利用用于构建先验遵守身体定律的神经网络的方法。我们从简单的单层神经网络(NN)开始,但避免选择激活功能。在某些条件和无限宽度极限下,我们可以应用中央限制定理,NN输出变为高斯。然后,我们可以通过依靠高斯过程(GP)理论来调查和操纵极限网络。据观察,作用于GP的线性操作员再次产生GP。对于定义微分方程并描述物理定律的差分运算符也是如此。如果我们要求GP或等效地遵守物理定律,那么这将产生与GP的协方差函数或内核的方程式,其解决方案等效地限制了模型以遵守物理定律。然后,中央限制定理建议可以通过选择激活函数来构建NNS来遵守物理定律,从而使它们在无限宽度极限中匹配特定的内核。以这种方式构建的激活函数可以保证NN先验遵守物理学,直到非限制网络宽度的近似误差。讨论了均匀的1D-螺旋方程的简单示例,并将其与天真的内核和激活进行了比较。
translated by 谷歌翻译
Understanding the functional principles of information processing in deep neural networks continues to be a challenge, in particular for networks with trained and thus non-random weights. To address this issue, we study the mapping between probability distributions implemented by a deep feed-forward network. We characterize this mapping as an iterated transformation of distributions, where the non-linearity in each layer transfers information between different orders of correlation functions. This allows us to identify essential statistics in the data, as well as different information representations that can be used by neural networks. Applied to an XOR task and to MNIST, we show that correlations up to second order predominantly capture the information processing in the internal layers, while the input layer also extracts higher-order correlations from the data. This analysis provides a quantitative and explainable perspective on classification.
translated by 谷歌翻译
收购用于监督学习的标签可能很昂贵。为了提高神经网络回归的样本效率,我们研究了活跃的学习方法,这些方法可以适应地选择未标记的数据进行标记。我们提出了一个框架,用于从(与网络相关的)基础内核,内核转换和选择方法中构造此类方法。我们的框架涵盖了许多基于神经网络的高斯过程近似以及非乘式方法的现有贝叶斯方法。此外,我们建议用草图的有限宽度神经切线核代替常用的最后层特征,并将它们与一种新型的聚类方法结合在一起。为了评估不同的方法,我们引入了一个由15个大型表格回归数据集组成的开源基准。我们所提出的方法的表现优于我们的基准测试上的最新方法,缩放到大数据集,并在不调整网络体系结构或培训代码的情况下开箱即用。我们提供开源代码,包括所有内核,内核转换和选择方法的有效实现,并可用于复制我们的结果。
translated by 谷歌翻译
The study of feature propagation at initialization in neural networks lies at the root of numerous initialization designs. An assumption very commonly made in the field states that the pre-activations are Gaussian. Although this convenient Gaussian hypothesis can be justified when the number of neurons per layer tends to infinity, it is challenged by both theoretical and experimental works for finite-width neural networks. Our major contribution is to construct a family of pairs of activation functions and initialization distributions that ensure that the pre-activations remain Gaussian throughout the network's depth, even in narrow neural networks. In the process, we discover a set of constraints that a neural network should fulfill to ensure Gaussian pre-activations. Additionally, we provide a critical review of the claims of the Edge of Chaos line of works and build an exact Edge of Chaos analysis. We also propose a unified view on pre-activations propagation, encompassing the framework of several well-known initialization procedures. Finally, our work provides a principled framework for answering the much-debated question: is it desirable to initialize the training of a neural network whose pre-activations are ensured to be Gaussian?
translated by 谷歌翻译
最近的作品表明,有限的贝叶斯神经网络有时可能会越优于其无限堂兄弟,因为有限网络可以灵活地调整其内部表示。然而,我们对有限网络的学习隐藏层表示如何与无限网络的固定表示不同的理论理解仍然不完整。研究了对网络的扰动有限宽度校正,但已经研究过的网络,但学习特征的渐近学尚未完全表征。在这里,我们认为具有线性读数和高斯可能性的任何贝叶斯网络的平均特征内核的领先有限宽度校正具有很大程度上的普遍形式。我们明确地说明了三个易行网络架构:深线性完全连接和卷积网络,以及具有单个非线性隐藏层的网络。我们的结果开始阐明任务相关的学习信号如何塑造宽阔的贝叶斯神经网络的隐藏层表示。
translated by 谷歌翻译
已知神经网络模型加强隐藏的数据偏差,使它们不可靠且难以解释。我们试图通过在功能空间中引入归纳偏差来构建“知道他们不知道的内容”。我们表明贝叶斯神经网络的定期激活功能在网络权重和平移 - 不变,静止的高斯过程前沿建立了连接之间的连接。此外,我们表明,通过覆盖三角波和周期性的Relu激活功能,该链接超出了正弦波(傅里叶)激活。在一系列实验中,我们表明定期激活功能获得了域内数据的可比性,并捕获对深度神经网络中的扰动输入的灵敏度进行域名检测。
translated by 谷歌翻译
现代深度神经网络(DNN)的成功基于其在多层转换投入以建立良好高级表示的能力。因此,了解这种表示学习过程至关重要。但是,我们不能使用涉及无限宽度限制的标准理论方法,因为它们消除了代表性学习。因此,我们开发了一个新的无限宽度限制,即表示的学习限制,该限制表现出表示形式的学习反映,但在有限宽度网络中,但同时仍然非常容易处理。例如,表示学习限制在深处的高斯过程中提供了恰好具有多种内核的多元高斯后期,包括所有各向同性(距离依赖)内核。我们得出一个优雅的目标,描述了每个网络层如何学习在输入和输出之间插值的表示形式。最后,我们使用此限制和目标来开发对内核方法的灵活,深刻的概括,我们称之为深内核机器(DKMS)。我们表明,可以使用受高斯过程文献中诱导点方法启发的方法将DKMS缩放到大数据集,并且我们表明DKMS表现出优于其他基于内核方法的性能。
translated by 谷歌翻译
深神经网络(DNN)是用于压缩和蒸馏信息的强大工具。由于它们的规模和复杂性,通常涉及数十亿间相互作用的内部自由度,精确分析方法通常会缩短。这种情况下的共同策略是识别平均潜在的快速微观变量的不稳定行为的缓慢自由度。在这里,我们在训练结束时识别在过度参数化的深卷积神经网络(CNNS)中发生的尺度的分离。它意味着神经元预激活与几乎高斯的方式与确定性潜在内核一起波动。在对于具有无限许多频道的CNN来说,这些内核是惰性的,对于有限的CNNS,它们以分析的方式通过数据适应和学习数据。由此产生的深度学习的热力学理论产生了几种深度非线性CNN玩具模型的准确预测。此外,它还提供了新的分析和理解CNN的方法。
translated by 谷歌翻译
通过建立神经网络和内核方法之间的联系,无限宽度极限阐明了深度学习的概括和优化方面。尽管它们的重要性,但这些内核方法的实用性在大规模学习设置中受到限制,因为它们(超)二次运行时和内存复杂性。此外,大多数先前关于神经内核的作品都集中在relu激活上,这主要是由于其受欢迎程度,但这也是由于很难计算此类内核来进行一般激活。在这项工作中,我们通过提供进行一般激活的方法来克服此类困难。首先,我们编译和扩展激活功能的列表,该函数允许精确的双重激活表达式计算神经内核。当确切的计算未知时,我们提出有效近似它们的方法。我们提出了一种快速的素描方法,该方法近似于任何多种多层神经网络高斯过程(NNGP)内核和神经切线核(NTK)矩阵,以实现广泛的激活功能,这超出了常见的经过分析的RELU激活。这是通过显示如何使用任何所需激活函​​数的截短的Hermite膨胀来近似神经内核来完成的。虽然大多数先前的工作都需要单位球体上的数据点,但我们的方法不受此类限制的影响,并且适用于$ \ Mathbb {r}^d $中的任何点数据集。此外,我们为NNGP和NTK矩阵提供了一个子空间嵌入,具有接近输入的距离运行时和接近最佳的目标尺寸,该目标尺寸适用于任何\ EMPH {均质}双重激活功能,具有快速收敛的Taylor膨胀。从经验上讲,关于精确的卷积NTK(CNTK)计算,我们的方法可实现$ 106 \ times $速度,用于在CIFAR-10数据集上的5层默特网络的近似CNTK。
translated by 谷歌翻译